Capability Driven Architecture (CDA)
an Approach to
Rapid Platform Integration

Tucson Embedded Systems

Savi

Written by: Tucson Embedded Systems, Inc.
January 2012

Updated for Publication:
June 2021

Copyright (C) Tucson Embedded Systems: 2011, 2021 — All Rights Reserved

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

Executive Summary

CDA presents a unique approach for integrating devices in that it combines a three-pronged solution for integration.
These are 1) an interface development process (i.e., the Super API), 2) a toolset supporting that process, and 3) a
software architecture supporting the rapid prototyping effort to demonstrate the “Plug and Play” capability. The CDA
toolset is utilized to manage the complex and large amount of interface data for each device. Without the toolset and
formal process, the volume and complexity of the data would quickly become unmanageable. Additionally, the
toolset’s support of airworthy development through requirement management, design, software development, and
traceability increases confidence of the resultant system.

CDA is a proven technology demonstrated through a number of related Government and commercial programs
including: Army communication systems integration, independent validation and verification as a first time third-
party user, and application to a number of technology and development efforts. CDA has been shown to reduce cost
through simplified interfaces, auto-generation of software, tests, and documentation and software reuse. It reduces
schedule by allowing concurrent software design, development, integration, testing, and responsiveness to evolving
or changing requirements by planning for them. Finally, it reduces risk by making cost and schedule more predictable
and controllable, enabling detailed visualization of the entire process, and management of all data artifacts from initial
requirements through design, development and test and lifecycle sustainment.

The inherent ability of CDA to provide a complete “cradle to grave” reusable software solution for device integration
in an FAA and military airworthy environment is unique. The ability to reduce cost, schedule, and risk, and to provide
an effective solution to the multiple integration issue meets the rapid integration objective of many programs.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
20f21

S$hvi

Capability Driven Architecture
an Approach to
Rapid Platform Integration

Table of Contents

EXECULIVE SUIMIMAIY ...ttt sttt ettt b e bbbt e b e s e ea et oo b e e b e b £ e b £ e R e e R b e eR e b e e b e ebeeb e e bt eme e b e benbesbesbeaneaneas 2
1.1 Questions Pertaining t0 thiS DOCUMENL............cciiiiiiiiieiiiee ettt sbe bbb s 5
N =14 1 LTSS T TSP P PSPPSR 6

2. (O8I Y AN I 1= od 4 o) o) o 7
2.1 OVBIVIBW. ..ttt b e R R R R Rt n Rt r e 7

2.1.1 CDA Background and PUIPOSEcuerueieiierierieitieeeeesieseesieseessessesseesseseessessesssssesssssessssssesssssessessessessenns 7
2.1.2 Model-Driven and Domain-Specific Approach — Applied to Mission & Safety Critical....................... 8
2.2 AP CIEALION ...ttt E et 8
2.2.1 AP CrEAION PIOCESSectiiterietiiteieettste et st ettt ettt ettt sb etk b etk b etk eb et b e eb et ekt sb et et e en e bt sne e b e anes 8
2.2.2 FUNCIONAT ADSIFACTIONvitiiietiiee ettt skttt btk sn et sr e eneanes 9
2.2.3 Design and LifeCYCle AMtIFACES.cuo i e bbb 10
2.2.4 Testing and VErTICALION.........coiiiiiiieee bbbttt bbb ens 12
2.3 CDA TOOISEL ...ttt et h et b btk h etk b et b Rt Rt Rt b e r etk nr et b e r et enenns 12
2.3.1 INterface ManagEMENL.coi ittt et b ettt et e st e bt b et e s bt b e et e b e besbesbeebeeneenes 13
2.3.2 RequiremMents IMaNAQEIMENT.civiieieierestese st eeeeetesee st e tesre s e s e eseeseestesaesrestesneeseeeenseseesrentesneaneanes 13
2.3.3 Capabilities-Based DESIGNccviviieieiiiereste e sesee e ete et re st e e e e et et st e ste e esae e et e nrenrenrenreeneenes 14
2.3.4 SOTtWare DEVEIOPIMENT..........iiiieir ettt et s e e s tesnees e e e et e eeseentennenneanes 16
2.3.5 Test Development and EXECULION.ccviiiiiieiieeeieie e et e st re e s e e et e seesresresneeneenes 17
2.4 SOTEWAE ATCNITECIUIEcoiiitiieiieec ettt r b n et nr e 18
2.4.1 Operating Environment ADSITACION LAYETcciiiiiiiieiiiiriesieeieeeeee e 19
2.4.2 SEIVICE ADSIIACLION LAYEEciuiitiiiietieieie ittt ettt bttt et e bbbt bbb e e et e besbesbesbeeneenes 19
2.4.3 Data Messaging and SYNCAFONIZALIONcoiiiiiiiiie et 20
2.5 Other RelAted EFFOITS.......oiviiiiieeiie ettt b b et sr e b sr e enennes 20
2.5.1 CDA Component Reuse and Demonstration EffOrts...........ccocoiiiiiiiiini e 20
2.5.2 AME Alt-Comms Radio Control IV&Y — WDI IDKccccoiiiiiiiiiiiieseeee e 20
2.5.3 JTRS AMF-SA API Design and ProtOtYPe......ccccvciueiereririeseseseseeeeseesieste e ssesneesaeseense e ssessessessenses 21
2.5.4 Commercial APPHCALIONS.ccvivireieiiie ettt st re e s e e e et e eesrenrenneeneenes 21

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved

3of21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

List of Figures

Figure 1: CDA Three-Pronged APPIOACK.coiiiiieiiieeie ittt ettt e se e bbb bt ese e e e sbesbesbesbesneeneas 7
Figure 2: CDA provides common middleware to buffer platforms from product changesccccoocvvvvvivivviviveciereennn, 8
1o U T N o o o TSSOSO 9
Figure 4: LRU API AbStraction and TraCe PrOCESS.......c..eveiueiuerieirerieriesiesiestessesseesaeseessesaessessessessesseessessessessessessensenns 10
1o U TR TV o] L= AN) =Vt £ 11
Figure 6: CDA Example Platform INtegration VIBWcccccviieiieiiiie e et ettt s snn e nnens 12
Figure 7: CDA Toolset ReqUIremMeNts PErSPECIIVEcviie e iersese et sttt re e aesaesnesreeneens 14
Figure 8: Capability DESIGN VIBWS.c.uiiiiiie ittt sttt bbbt besb e s be bt et e et e st e seesbesbesbesbeane e 15
Figure 9: AP1 t0 ICD TrACING VIBWccueiiiitiiteittetiee ettt sttt ettt s b bbb e e b eb e s be bt et e et eme et e sbenbesbesbeene e 16
Figure 10: Software Development ENVIFONMENT ..ottt ettt st ne e e 17
Figure 11: Test ENVIFONMENT PEISPECTIVE.iiuiiiiieie ettt sttt e bbbt ettt et b e b sbesbeene e 18
FIgUre 12: CDA ADSITACTION LAYEIS....ccuiiiiitiiteite ettt sttt sttt sttt bt sb e b e et e e e eabeebesbesbesbe et e e neeneeseesbesbesbesbeene e 19
Figure 13: Operating Environment ADSLraCtion LAYcoiiiiiiiieieinie ettt et nn 19

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
4 0f 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

1.1 Questions Pertaining to this Document

Any questions on or pertaining to this document should be sent to the attention of Mr. Stephen Simi, Tucson Embedded
Systems, Inc. Program Manager at StephenS@TucsonEmbedded.com.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
5o0f21

mailto:StephenS@TucsonEmbedded.com

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

1.2 Terms
Super API An Application Programming Interface providing an overarching, high-level platform
access to the domains functionality.
API Application Programming Interface
SA Situational Awareness
MOSA Modular Open Systems Approach: An integrated business and technical strategy that:
— provides an enabling environment
— employs a modular design
— defines key interfaces
— uses widely supported, open standards that are published and maintained by a
recognized industry standards organization
— uses certified conformant products
Product Suite The complete HW/SW implementation of rapid integration technologies.
(OF] Operating System: The Operating System that the Product Suite operates within.
RTOS Real-Time Operating System: Refers to a special type of operating systems typically
used in embedded systems requiring deterministic execution environments. This is
sometimes called hard real-time.

Table 1: Terms

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
6 of 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

2. CDA Description

2.1 Overview

Capability Driven Architecture (CDA)[TES Patent '] is an architecture
initially developed to achieve rapid development and portability of
software based capabilities across multiple avionics platforms. This is

API

Process

achieved with a three-pronged solution (Figure 1) of providing a process CDA

for developing hardware independent functional groupings called G

capabilities, a toolset for supporting the CDA process, and airworthy Software
platform agnostic software architecture. The process and toolset’s support Architecture

the complete software lifecycle including: capability development,
management and traceability of application programming interfaces,
verification of the software components, and airworthy artifact and
traceability needs.

Figure 1: CDA Three-Pronged
Approach

2.1.1 CDA Background and Purpose

CDA was primarily built to support the integration of common devices upon dissimilar airworthy platforms (as
illustrated in Figure 2). CDA is more than a code generation tool, or a test and verification system. It is a design
methodology that promotes software reuse by abstracting platform environment and device capabilities into common
or standard interfaces. This methodology is supported by open platform tools and is backed by a rich history of safety
critical aviation flight software systems. All of the software built or generated under the CDA system is developed
upon of a base level of software known as the operating environment or OE. This set of code allows for the
deterministic capabilities in a cross-platform development package. While currently actively supporting both
Windows 32-bit and 64-bit, Linux 32-bit and 64-bit, and ARM-based processor systems, TES has also successfully
shown that CDA-based applications run on a host of Real-Time Operating Systems (RTOS): LinuxWork’s LynxOS,
Greenhill’s Integrity, and Wind River’s VxWorks; on varied embedded processors such as PowerPC and Intel
architectures.

By supporting such a wide variety of operating systems?, TES and the CDA concepts can easily support the platforms
that run these systems. CDA has been developed to provide the safety critical systems needed to fly and service various
rotorcraft such as: the OH-58D Kiowa Warrior, UH-60L 60M Black Hawk, AH-64A/D Longbow Apache, and CH-
47F Chinook.

1 TES’ CDA is a patented technology. All CDA by-products developed are provided to the Government and marked
“Government Purpose Rights” or “Unlimited Rights”.

2 Specific architecture platforms and RTOS versions are identified in the System and Software Requirements
Specification.
Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved

70of21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

Capability Driven Architecture
Provides COMMON middleware to buffer platforms from product changes

W ARC-231
ﬁldieésaﬁ‘equency(SO i> .l 2 ! f JTRS

Future

Reusable I 3 LRU

Figure 2: CDA provides common middleware to buffer platforms from product changes
2.1.2 Model-Driven and Domain-Specific Approach — Applied to Mission & Safety Critical

CDA is a software architecture that combines the Model Driven Architecture (MDA) approach with a Domain Specific
Model approach through software design and implementation. CDA focuses on creating a platform-independent
model of the software system. This independence is created by using a model that relies on automated tools to translate
that model to software rather than being developed to a specific platform RTOS. CDA extends beyond the MDA
approach by emphasizing the development and integration of “capabilities” rather than on the specific systems, sub-
systems, or hardware.

A formal process is used to identify the inherent capabilities of the system and subsystems. This process is iterative,
allowing a “churn” of capability sets so that commonalities and taxonomy of middleware are identified for the
simplification of cross-platform integration and the benefit reuse. This process is described further below.

Another major design feature of CDA is that it applies the favorable aspects of MDA to mission and safety-critical
applications. Typically, these applications have hard and soft real-time system requirements with strict traceability
needs. CDA has been architected from the ground-up to meet strict airworthy requirements and has been demonstrated
for reusing mission and safety critical software components [FAA’s AC 20-148]. CDA is an open standards-based
architecture for building highly reliable applications of various sizes in both local and highly distributed environments.
Unique to CDA and its process is its ability to integrate and deploy new and legacy hardware and software capabilities
as one holistic reusable environment onto various platforms in a mission critical system.

2.2 API Creation

2.2.1 API Creation Process

The CDA process is a combination of bottom-up and top-down approaches where the input to the process is the low-
level interface documents and the system requirements. These low-level documents are imported into the CDA toolset
(described in Figure 3), and reside in a database for an abstraction of the data resulting in a top-down open and

commonality-based design. The high-level system requirements are also entered into the toolset. The remaining
process fills in the gaps between the system requirements and the low-level ICDs.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
8 of 21

SA\/i

Capability Driven Architecture
an Approach to
Rapid Platform Integration

2.2.2

The functional abstraction analysis process is iterative in nature. It
is used to define standard interfaces and categorize the underlying
control code for the capability.

Functional Abstraction

The primary idea behind the process is that by documenting the
detailed interfaces, bubbling those interfaces up into their primary
functions, and then bubbling up those functions into capabilities
provides a process by which a complete capability interface can
be defined.

The input into the CDA process is low-level Interface Control
Documents (ICDs) for defining application-level interfaces, and
protocol and operating system specification documents for
operating environment interfaces. The combination of these two
high and low-level interfaces promotes CDA’s ability to rapidly
integrate common and dissimilar capabilities and devices on
dissimilar platforms. This abstraction process is depicted as
follows.

The process works for both the high-level application and device
interfaces as well as the low-level operating environment (OE)
interface. The operating environment API allows all CDA
implementations to use operating system (OS) services such as
threads, mutual exclusion, file operations, and timers; yet, it
isolates the implementations from the specifics of every operating
system on which CDA executes.

It is the CDA-OE that allows CDA applications to be supported on
all of the major operating systems such as Windows, Linux, and
RTOSs (such as VxWorks, LynxOs, and Integrity). Adding
additional platform support in CDA-OE is a straightforward effort.

This process of iteratively refining the interfaces can be a difficult
job to manage by hand. This is why a software toolset, aptly named
CDA, was developed.

|
|
Device MICDs

0S specifications
Protocol specifications

Mapping

Trace low-level fields
and parameters to

higher level common
interfaces

Review

Check mappings
- Identify gaps & overlaps
-Clarify Capabilities

Prototype & Test

Application-level API
Operating Environment API

Figure 3: API Process

For example, the results expected on the JTRS AMF-SA Radio Control APl program are one common API used to
control three Army radios, 11 waveforms, simplify the impact of changes to the Platforms, reduce program risk, and
program integration costs and schedule. It is expected that TES processes the 1,700 pages of the JTRS AMF-SA
program Radio ICDs, MIB files and waveforms, and develop one Radio Control APIl. The process and result is
illustrated in Figure 4 below.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
9of21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

ARC-201D

Figure 4: LRU API Abstraction and Trace Process

Once the API is defined, the interface requirements document can be auto-generated from the CDA toolset.
Additionally, the design of the interface, the design of the code, and the design of the configuration data (which
implements the data caching) can be auto-generated. Furthermore, test cases and test procedures can also be generated
from CDA toolset. Also, the CDA toolset can auto-generate software code, test cases and procedures, and
documentation artifacts. The code modules currently implemented are the C++ messaging code, CORBA IDL, ONC-
RPC IDL, Java messaging, and a Java GUI display.

2.2.3

Design and Lifecycle Artifacts

The CDA process and toolset supports each stage of the development phase’s lifecycle. Listed below is a description
of the application of CDA at each phase and the corresponding benefits:

Requirements Analysis — Generation of requirements from the Model significantly reduces errors and
provides a more complete and correct set of requirements which trace directly to the detailed specifications
and code.

High Level Design — Generation of the High-Level design with accommodations for application-unique
design, such as tasking/processes. The CDA model supports reuse of the high-level design of each process
in that many modules are reused; this includes all of the documents, code, unit testing, and integration testing.

Detailed Specifications — The detailed specification can be completely generated from the CDA model and
toolset. This includes tracing to the requirements, as well as tracing to the raw ICD data and APIs.

Coding — All of the code for handling publish-subscribe data is auto-generated. This eliminates any possible
hand-coding errors. It simply works. Also, much of the coding style and significant modularity of the
software is driven by the CDA process. Therefore, the programmer has to implement only that code which is
difficult; they do not spend time on tedious coding which is very error prone. Instead, they spend their time
on the actual application.

Unit Testing — The modularity of the software developed through CDA give the ability to easily test the
modules, as well as the opportunity to auto-generate test cases and procedures for each module. This method
provides a greatly reduced unit testing effort.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved

10 of 21

A \/ | Capability Driven Architecture
‘ an Approach to

Rapid Platform Integration

e Integration Testing — The publish-subscribe interface provides a well-defined specification for integration
testing and simulation. It provides the ability to simulate those inputs that are difficult to provide in a
stimulated environment. This combined with the Programmable Control Test Station’s (PCTS) ability to
stimulate those inputs/outputs gives a much more complete integration environment.

e Operational Testing — Testing at this level must still occur, but is significantly simplified due to the
correctness and completeness of the modules developed with the CDA process. In addition, the ability to
rapidly prototype a functional application early on in the development phase provides important operational
feedback, which is invaluable in determining the operational requirements. This increases the likelihood that
the resulting system functions as needed.

e Artifact Generation and Lifecycle Support through Airworthiness — The CDA toolset has the ability to auto-
generate lifecycle artifacts. TES had worked with Army representatives from the Aviation & Missile
Research, Development, and Engineering Center (AMRDEC) Software Engineering Directorate (SED) to
confirm that the results were suitable as supporting artifacts for Airworthiness Qualification Substantiation
Records as defined in AR 70-62.

The lifecycle artifacts include those that are required to support airworthiness certification processes. These are
planning, requirements, testing documents, and many have been designed for reuse, per AC-20-148. The table below
lists the artifacts required for AWR and identifies those that can be reused across other platforms.

Software Artifacts Reusable
Plan for Software Aspacts of Cartification Yes
Softwame Devalopmeant Plan Yes
Softwame Confipumation Managament Plan Yes
Software Quality Azswrance Plan Yes
Dlatform Ponctional Reguiraments Unigue per Platform
R2C2 Softwara Requirements Specification Yes
Raquiements Traceability Matrix Yes
Software Design Dezcription Yes
API Specification Yes
Softwame Test Plan Yes
Software Test Report Unigue per Platform
Softwame Strocteral Coversge Analysis [Testing Tes
Softwame Verification Cazes, Scripts, & Procedumss Tes
Software Accomplishment Summarny Tes
Safety Aszeszment Repornt Unigue per Platform
Software Problem/Change Reports Unigue per Platform
Softwame Vermion Description TED
Intagrator’s Usars Guida Yes
RICZ Sourcs Cods =

Figure 5: Reusable Artifacts

Requirements (SSS/SRS/IRS), Design (SDD/IDD), Interface Control Document (ICD), Software/System Verification
and Procedures (SVCP) include full traceability from requirements to design, implementation and verification.
Through the auto generation of documents, code, test, and simulation, the programmer workload is significantly
reduced. In effect, the “busy work” of programming and testing is performed by development of the importers, code
generators, and artifact generators.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
11 0f 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

2.2.4 Testing and Verification

The process of creating fully defined and published APIs provides significant benefits for testing and verification.
These benefits are fully defined test points, early test development, auto-generation of test cases and procedures, full
traceability and documentation. First, the APIs defined in an SRS or IRS provide specific interfaces that can be fully
tested and verified. Second, since the API definition is performed early in the development effort, test cases and
procedures can be developed early as well. Third, since the full API is stored in a computer-readable format, a
significant amount of test cases and procedures can be auto-generated. Lastly, an integrated test station can utilize the
auto-generated test vectors, test procedures and the developed device API to provide a hardware-in-the-loop test
environment with traceability and documentation. In our experience, testing and verification is one of the more
significant savings opportunities derived from the CDA process as we continue to expand the capabilities of the test
auto-generation toolset.

2.3 CDA Toolset

The CDA toolset is a multi-platform set of Eclipse plug-ins developed to manage all of the aspects of CDA application
development. Eclipse is an open source industry standard for Software Integrated Developers Environments. It
provides significant functionality out-of-box for programming in Java, C/C++, and many other languages. In addition,
Configuration management, software review, and error tracking tools are available, as well as many other plug-ins too
numerous to list here.

CDA tools are built to support various roles or perspectives based on the different software development lifecycle
needs. These perspectives match the normal software development lifecycle, but also include other views beyond just
software development: CONOPS, Modeling and Simulation, Situational Awareness in 2D and 3D, Platform
independent models, Platform Specific Models, and more.

CDA Trace = CDA_AMF/AMF [UHGAM_AMF.cdafig - Eclipse Platform

L P -l ININ s St S 71 BhCDA Test ... ACDA Trace | Resource
i Mavigato |k Type Vie 2 @k TraceMa| = O] [JTRS_AMF_PLATFORM_MIB.my | < AMF_Project.cda | ARC-231TestConfig.cdafig | UHEAM_AMF.cdafig =5
X - Select

Twpe Croup | Tyoe / Aur | Enum Slgnad jEnun Marguee
» SNMP_CHD_Types. xmi Al ==

*typeFileAMF_Praoject.xml 2 Imerfaces

AmfSysAuthDataType 4 Etherner
» BAUD_RATES } 1553
Boolean

» CRYPTO_CONDITIONS i

= CRYPTO_ENCRYFTION_TYPES 4SNP

* CRYPTO_FILL_STATUS } coa
*CRYPTO_FILL_TYPES by
» CRYPTO_KEYS = Col
* CRYPTO_MODES § Sequential
* CRYPTO_VOCODERS ety

* DAMA_SKHZ_RANCING STATUST TF Parallel Activity

* DAMA_SKHZ_SERVICE_TYPES
*DAMA_SKHZ_TEARDOWN_REASON
*DAMA_CALL_ACK

{33 Test Activinyish
PCTS

» DAMA_CHANNEL_BANDWIDTH_TY 8 st
» DAMA_CODE_RATE_TYPES —
» DAMA_CONTENTION_RANGE_SLOT \2.5DA Capabiries
» DAMA_COUNTDOWN_TYPES = CDA Devices
» DAMA_DATA_RATE_TYPES ARC210
» DAMA_LINK_TEST_RATES '
» DAMA_LOGIN_STATUS_TYPES ARC220
* DAMA_LOGOUT STATUS_TYPES L.
o =DAMA MODLILATION. RATE TYFFS ‘ e
Properties & . @ Probl =0
perties Problems I FRC1SZ
5 v
Property Value . ARCZ01D
(25 COA Extem...

T T T T

Figure 6: CDA Example Platform Integration View

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
12 of 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

The developer first starts with the import of ICDs, MICDs, or APls. Once available, Systems requirements are entered
into the toolset. At this point, the CONOPS and Systems level diagrams can be developed to provide a model of the
Concept of Operations and the Platform Integration View (Figure 6).

The toolset is a combination of tools that work together to provide a complete requirements, design, development, and
integration package. These tools are listed below:

e Import Tool — used to read MICDs, ICDs, protocol and operating system specification documents
e Requirements Viewer and Trace Tools

e Diagram Editor — used to input the CONOPS, Platform Design, Device View, Platform Integration Views,
Simulation Scenarios, and Test Environments

e Capability Viewer — used to generate Unified Modeling Language (UML®) and other design diagrams
e Comparison Tool — used to generate variance reports between capabilities

e Capability, API, and ICD Trace Tools — used to develop common APIs and perform requirements tracing
through the process

e Artifact Generator — used to generate automated test scripts, prototype control code, and lifecycle
documentation

The CDA tools are grouped to support the CDA process with five management capabilities. These toolset capabilities
allow engineers to design application-level and OE-level APIs. The capabilities include:

e Interface Management

e Requirements Management

e Capabilities-Based Design

e Software Development

e Test Development and Execution
2.3.1 Interface Management

The CDA toolset provides a unique set of tools for the importation of many device interfaces: the creation and mapping
of abstracted Application Programming Interfaces (APIs) and tracing to the device interfaces. The importer tools
provide the entry of device and operating data into the CDA database.

For example, if the developer is implementing an interface to a family of devices such as GPSs, the device ICDs can
be imported into the CDA toolset. Once the device ICDs are imported, the message fields are traced to the API/service
interface. The API provides a simple function call such as “getLocation()”, and link to set ???Device ICD’s function
“currLat()”, “currLong()”. The “getLocation()” now returns a standardized location regardless of the device connected
to the platform. Once this relatively simple process is accomplished, the interface code, design artifacts, and TCs/TPs
can be auto-generated.

2.3.2 Requirements Management

A tool for basic requirements data entry, traceability and tracking is provided to developers to simplify the
management of requirements. In addition, it provides developers the ability to quickly access, update, and trace to
application requirements. The following capabilities are provided:

e Requirements Entry

e Full requirements traceability

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
13 of 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

e DOORS® export/import
e Document Generation

e Traceability Matrix Generation

T R o | . S COA fagu.,, <D COA Diagr.,. SCOAAP D, BCDA Tast . SCOA Tracs

hascwase independentant

Hardwars reguiramants ars THD and will be based on tha platfarm which will ba sugpared

tples RTOES (VAW Integrity, Lyaniis)

jei 2
=3
: 2

Figure 7: CDA Toolset Requirements Perspective
2.3.3 Capabilities-Based Design

The Capability design tools provide a visual method for mapping to requirements, platforms, and device interfaces.
These tools support various design views in the user’s vernacular or user’s domain. These are the ICD view, Concept
of Operations (CONOPS) view, Platform Integration view, and device integration view. The concept of visualizing
the design from the various users’ domain is very powerful. For example, platform systems engineers can view the
design from a platform integration level, and they can drill down to the device perspectives (Figure 7). This provides
an interface to increase the understanding of the platform as a whole while providing quick access to the details of the
system (Figure 8).

Since the complete details for the platforms software integration are stored in machine-readable format, documentation
can be auto generated in part or in whole. This includes such documentation as the SSS, SRS/IRS, SDD/IDD, and
UML® formats.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
14 of 21

TES

]
A \/ I Capability Driven Architecture
an Approach to

Rapid Platform Integration

i SO

e W S CONGen SCOADag SCOAMAD S0 Ter SLOA Tao e sdim BN By) N R]

L EELL L. B L. Ll

ca L]
B Al .

e

Siac dasid ol LY =2
Weathes -Carmin
.
Wk AR
3 o
o e M — | CDA Devics < e
= i | = Tawd -
- -
-
ey
2 CDA Do, <
B
- & s

Figure 8: Capability Design Views

In addition, during design and development, the traceability between the component pieces of the design are
maintained at all levels. This provides the additional ability for the developer to manage the traceability at all levels.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
150f 21

Capability Driven Architecture

an Approach to

Rapid Platform Integration

s v |
CDA Trace - CDA_AMF/R2C2Model /r2c2_cda_model.cda - Eclipse Platform

rddde B |3 Q e | R|es @) - 0

[*CDA Test ... =CDA Trace [[SResource

=. Navigator | & Type View | &= Trace Matrix &3 = O | *AMF_Project.cda # *ARC-231TestConfig.c 5 UH64M_AMF.cdafig & r2¢2_cda_model.cda 8 71 =a
Capability/Function ARC210 ARC220 ARC231 ARC201D PRC1 <CDA version="2.0.0">
SATCOM + + <TypeFiless
DAMA + + g
Radio + + + + Source Properties | Schemes
SetGuard 4+ + 5 Capability View |5 API View |5 Trace API View 3¢ E¢LE-BERp-RXEETD
GetGuard + + Capability / Function / Parameter Device Message Fleld To/From Device APl Value AP Min AP Max 1CD Valu
Se(Homilng 4 4 + Radio
?:[tl:l:;z';g : : : CetSignalStrength]
SetBeacon
GetManual + + + beacon_active ARC231 Store Setup Mode To Device TRUE 3
zeel;:":;:’ i i i beacon_active ARC231 Activate Setup Operating Mode To Device TRUE 3
) beacon_active ARC231 Activate Setup Variant To Device TRUE 3
GetSignalStren 4 + * beacon_active PRCIS2 Cmd VULOS BE/Mode To Device TRUE 1
zi‘t';:‘fﬂ’; i i beacon_active PRC152 Cmd VULOS BE/ Mode To Device FALSE 0
i beacon_active ARC231 LOS Data Block Variant To/From Device TRUE 3
SetMobile + C
GetMobile 4+ = = = = = =
SetTransmitter + + o External Capability View | <3 External APl View | & Trace External APl View & ICD View & . @ Trace ICD View a
GetTransmitter + 25 G LB R R EE R
SetModulation <= 4+ + Device / Message / Field / SubFi¢ To/From Device ~ Waveform Page Word BitStart BitEnd Min Length Max Length Value Size
CetMogg\a(ion + + + Scan Data Block To/From Device
SetMaritime + Activate Setup To Device
GetMaritime 4 + Operating Mode 3347 2 0o 7 0 0 0
SetTXFrequenc + + + Variant 33.4.7 2 0 7 0 0 0
GetTXFrequenc - + + Preset Number 33.47 3 o 7 0 0 0
SetRXFrequenc 4 + + Emergency Guard To Device
s Store Service Preset To Device
= Properties | & Problems &3 o4 i=—0 5k Circuit Service Block To Device
Sev Description Capability 5k Message Service Blo To Device
i Trace does not include parameter. Crypto j 25k Circuit Service Bloc To Device
i Trace does not include parameter. Crypto Status Message RequesTo Device
i Trace does not include parameter. Crypto View Key Status To Device
i Trace does not include parameter. HaveQuick Request Preset To Device
i Trace does not include parameter. HaveQuick Store ADM Preset To Device
& One APl parameter traced to many ICD functions. SATCOM Terminal Data To/From Device
& One APl parameter traced to many ICD functions. SATCOM Platform Setting To/From Device
& One APl parameter traced to many ICD functions. SATCOM 1/O Async Setup To Device
& One APl parameter traced to many ICD functions. SATCOM |/O Device Setup To Device
& One APl parameter traced to many ICD functions. SATCOM Time of Day To/From Device
o~ . o cemmns (s — -
= =

Figure 9: API to ICD Tracing View

The toolset can also support DOORS® integration through the Eclipse import and export mechanism utilized for ICD
import and export. This allows the developer to have quick access to full bi-directional traceability from requirements,

to design and to test cases and procedures to test results.

2.3.4 Software Development

As stated above, the CDA toolset is an Integrated Software Development Environment based on industry standard
Eclipse. It is this integration with the standard Eclipse environment that provides a complete software development
environment (Figure 10). The following tools are provided for the software development team:

e Integrated Team Development Tools
0 Build Management
o Version Management
0 Bug Tracking
0 Code Reviews
e Code generation
e Test generation, execution, and results

e Traceability Support to Requirements and Design

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved

16 of 21

S$hvi

Capability Driven Architecture
an Approach to
Rapid Platform Integration

a Mo CDA APl Design — CDA_AMF [test cpp - Eclipse Platform
= = - - Q- i G CDA Requ... SR CDA Diagr... SRCDAAPID.. CDA Test ... (DA Trace
« |85 | ® Gl =
. Navigato |k Type Vie i1 c@ APITrace| = O <3 *RC_Super_API_Projec & Conops.cdafig testicpn P "7 i
x 1
Type Group | Type | Attr | Enum Signed Enum
BaseTypes.xml -~
Binary ! tulntlé Rodio::getType(woid)
| i
Eadlean ! return m_tyoe;
Float | }
Integer |
Percent | 3 \
String | void Radio::GetSignalStrength(tfloat Strength) |
XMLString { I
intl6 [s
int32 v
int8 ~
ulnt;: & Capability View =3k AP1 View s Trace APl View II - o X =
uint
uint Capability / Function | Parameter Device Message Pl To/From Der AP Walue AF
Types.xml . Ru'? E
SHMP_OID_Types.xml ¥ SetPower
— =T CetPower
= == CetSignalStrength
< Problems Properties I3 strength ARC231 Module Status RX Signal Strens 0
-t ¥ strength ARC201D RspVHF 01 Signal Strengt 0
Property Value SetBeacon
CetBeacon -
SetMohile a
 ———— = ar
o External Cap = External APl 3 Trace Extern o ICD View I # Trace KDVi 9 Errorlog =0
v RN E =D
Dewice [Message [Field [Subfa To/From Dewce Category Page wors Byer Bt Start Bic End
BEIIN Baddin
_——————3 g e —— e o
0 Writable Insert 38:1 -

Figure 10: Software Development Environment
2.3.5 Test Development and Execution

The Programmable Control Test Station (PCTS) was developed for automated testing in mission and safety critical
systems. PCTS has since been integrated as part of the CDA toolset (Figure 11). PCTS includes the following
functions:

e Test Case & Test Procedure Development
e Execute Batched Test Scripts against stimulated/simulated devices
e Visualization of Recorded Test Results

e Supports Traceability of Test Cases and procedures to Requirements and test results to test procedures

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
17 of 21

Capability Driven Architecture
an Approach to
Rapid Platform Integration

& PCIS - test sample/Test Set 1.flow - Eclipse Platform
fle Edt Wiew Havigate Search Project Run Window Help

o = L . —
if-adunEe R iEia i3 (s s = B |[ro B &
17 Progect Explarer 23 = O | g PCTS Test Manager 2 = O |[g% outline 22 KBl 2T
EE| e~ [}y Select 4 igcszm
= 1= test sample i} Marques ' ARC:ZDID
B[1ARCZ310peratorCmds PCTS &
(3 IGRAUNDOperatorCmds } Ethernet = b
(= MaritimeCperatorCmds | 1553 - g;'E AL_Ti_Cmms
{2 IUHFLOSOpsratorCmds - IC”‘“?'ZE‘“E;” e
[(2 WHFATCOperatorCmds (= Components £ a AME ALT-Comms. @ U”d‘DU'ﬂ 1on Tests
(= IWHFFMOperatarCrds S Sequential Activity P . i S
By ARC231 00, itialh 1.3 Initialization Q’; Activate Presets Tests
L OIS g parallel Activity
R run_pRCZ31_01_configure) 2 confi
&’ run_ARC231_02_loadPrese {§} Test Activity(s) N Aton bt
Fer pun_ARC231_03_activatep| =
o S PCTS Test Results £2 =]
£ sampleProcedureSequence 5% Load Presets Test
G Test Set 1 Flow BT
ckivate Presets Tests TESt Results
B ARC-z01
s AncEst — 1
CDU-7000 6 | - Feissed
» I Failed
e © ot

S
ARC-231 ARC-201D
w

Test Points

4 i
= = . .~ =0
= Properties 52 = O Bl run_ARC231_00_initialize.rex [Test Resuls 2 & progress I : %
[6l® g ~ Running setSguelchLevel with data set data_150 T || R A e bl x
ranaE Va\ueﬁrl set WDI_CL RC_COMM_WDI_ARC231_IARC2310peratorCmds/sstSguelch oK e 5 :
D_I i executing UDI CL RC CONM WDI ARC231 IRRCZ31Operatorcmds/setScuel 45 Synchranizing Task List {Slesping)
:'eName T : PASSED RC_COMM WLI_ARC231_TARCEZ310peratormds/DMId Commanded)
e HBoc ments anh: Uaiting for 5000 milliseconds. i
PASSED RC_COMM_VDI_ARCZ31_IARCZ310peratorCuds/DNId_Reported_
N ol e o P N N
< >
P e @'}

Figure 11: Test Environment Perspective

24 Software Architecture

The key to common reusable software is being able to isolate the software from the differences between the various
platforms and devices. By isolating device control software from differences between platforms, the software becomes
platform-independent and reusable across the platforms. By isolating application software from differences between
devices, the platform applications become device-independent and reusable with different devices.

For these reasons, CDA replaces platform-unique code with a structure of three layers of abstraction: an Operating
Environment (OE) abstraction layer, a software framework for developing CDA applications, and an interface
abstraction layer.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
18 of 21

A \/ ‘ Capability Driven Architecture
an Approach to

Rapid Platform Integration

ASVL-VAD
HLTH-VdD
ADOVAD
ATAVdVAD
AVN-VAD

CDA-Framework |
CDA-OE Lebabos |]
OS/RTOS
BSP and Drivers
HARDWARE and 10

Figure 12: CDA Abstraction Layers

Through these layers of abstraction (Figure 12), CDA effectively reduces the software development efforts in two
ways: across the platforms and within a platform. Firstly, the integration efforts across platforms are reduced since
the software for controlling common avionic equipment is platform independent and can be used by all platforms.
Secondly, the integration efforts within a platform are reduced since virtually an entire category of devices is integrated
into a platform by using a single interface. This means that different interfaces/devices in the same category become
largely interchangeable so that the addition of a new device or swapping with a similar device having similar
functionality requires little effort.

2.4.1 Operating Environment Abstraction Layer

The Operating Environment (OE) consists of a platform’s hardware and computer operating system — essentially those
parts of a system that define the platform to a CDA implementation. To remain platform independent, the
implementation code does not communicate directly with the operating system or hardware. Instead, the
implementation accesses OS services and other protocols, such as threads and timer services— or 10 protocols—through
the standard interfaces defined in the OE abstraction layer (Figure 13).

Capability Driven Interface C
Capability Implementation C
Device Device Device De
A B C

Specific Specific Specific Sp
Code Code Code (

Capability

Device Abstraction Layer

Figure 13: Operating Environment Abstraction Layer
2.4.2 Service Abstraction Layer

The service abstraction layer provides the interface to the user application. It contains the bulk of the CDA
implementation and allows platform application code to be independent of the devices integrated on a platform. This
abstraction layer is where actual integration of devices takes place.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
19 of 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

To perform this abstraction, a category of similar devices is broken down into its core Capabilities. A Capability is a
collection of functions with a related purpose. For example, the functions that change and produce positioning data
such as GPS or Inertial Measurement Units are in the Position Capability.

At the top level of a Capability is the capability driven interface. This interface defines the API used by platform
applications to access Capability functions regardless of the device being controlled. This enables integrators to shift
from the convention of integrating devices (device-centric) to a practice of integrating Capabilities (Capability-
centric). Thus, the code for a well-designed application using a particular Capability does not need to change when
replacing one device with a different device that has the similar Capability. In fact, this feature has been proven
through the ability to switch from a Trimble GPS position to a Honeywell VNU, or a BAE IMU, without affecting
any applications other than the CDA-NAV component.

This abstraction is implemented in CDA; yet, it still allows a device-centric approach for an application by regarding
a collection of Capabilities as a particular device. In other words, the application can be implemented using grouped
Capabilities such that each group is treated as a device. This technique can allow current applications to use CDA
with minimal modification, albeit the interchangeability of like devices may be limited.

2.4.3 Data Messaging and Synchronization

The messaging system utilized by CDA is the Capability Driven Architecture Data Distribution Service (CDA-DDS).
CDA-DDS provides the backbone and foundation for all of the interfaces between devices and platform applications
in the system. CDA minimizes the data coupling between software components and provides support for various
languages (C++, Ada, and Java), as well as a host of network protocols (TCP/IP, UDP, MIL-STD-1553,
RS232/422/485, and ZigBee 802.15.4).

CDA-DDS was modeled after the OMG DDS. CDA-DDS also provides some significant enhancements to OMG DDS
to support hard real-time systems and for low-bandwidth and disconnected network operation.

CDA-DDS provides significant benefits for application developers by providing a rich set of tools to model the data
that is transferred between components and for monitoring and debugging your application. Application data can be
configured rigidly for hard real-time systems (through code generation) or “on the fly” by the application.

2.5 Other Related Efforts
25.1 CDA Component Reuse and Demonstration Efforts

The key to common and reusable software is being able to isolate the software from the differences between the
various platforms and devices. By isolating device control software from differences between platforms, the software
becomes platform-independent and reusable across the platforms. By isolating application software from differences
between devices, the platform applications become device-independent and reusable with different devices.

CDA-RC was demonstrated in 2006 to PM-AME as a viable reusable architecture for Army Aviation radio control.
The CDA process is now being reused on the JTRS AMF-SA program to design the Radio Control API for the
common control of the AMF-SA, AN/ARC-231, and AN/ARC-201D radios. Collectively, the Radio Control API
should control 3 radios and 11 waveforms. These AMF-SA Radio Control API efforts are to be demonstrated 2QTR
2011 to PM-AME. CDA process and verifications capabilities are being used to perform IV&YV on PM-AME Alt-
Comms suite of reusable software. TES is testing each engineering release and identifying operational functional
issues early in the lifecycle, thereby reducing program integration costs and making the aircraft safer.

2.5.2 AME Alt-Comms Radio Control IV&V - WDI IDK

The CDA toolset is being utilized to perform an independent verification of Army Aviation PM-AME Alt-Comms
Well Defined Interface (WDI) Integrators Developers Kit (IDK). CDA is being used to import the WDI IDK C++
header files into the toolkit’s ICD database. This data is then used to create a test-harness to provide a bridge for the
CDA PCTS. The database is also used to generate test cases and test procedures that are executed with the PCTS.

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
20 of 21

A \/ | Capability Driven Architecture
an Approach to

Rapid Platform Integration

2.5.3 JTRS AMF-SA API Design and Prototype

The CDA toolset is being utilized to develop a Super API for Radio control software for the JTRS AMF-SA radio, the
AN/ARC-231 radio, and the AN/ARC-201D radio. CDA import plug-ins have been developed to import all of the
radio ICDs and the AMF MIBS for SRW and WNW. Once imported, the ICDs are being run through the API
development process to create a set of functional interfaces for these radios. The interfaces includes full traceability
to all of the message fields and SNMP MIB variables. The resultant API is documented in both human readable and
digital formats as an Interface Requirements Specification (IRS), XML data format, and UML/XMI.

2.5.4 Commercial Applications
CDA is being utilized in many different areas of engineering including:
o Wireless sensor system for Mining asset tracking
e Formal verification for Commercial aviation O2 System for DO-178B Level B

e University of Arizona UGV Capstone effort

Copyright © Tucson Embedded Systems, Inc. 2012, 2021 — All Rights Reserved
21of21

	Executive Summary
	2.1.1 CDA Background and Purpose 7
	2.1.2 Model-Driven and Domain-Specific Approach – Applied to Mission & Safety Critical 8
	2.2.1 API Creation Process 8
	2.2.2 Functional Abstraction 9
	2.2.3 Design and Lifecycle Artifacts 10
	2.2.4 Testing and Verification 12
	2.3.1 Interface Management 13
	2.3.2 Requirements Management 13
	2.3.3 Capabilities-Based Design 14
	2.3.4 Software Development 16
	2.3.5 Test Development and Execution 17
	2.4.1 Operating Environment Abstraction Layer 19
	2.4.2 Service Abstraction Layer 19
	2.4.3 Data Messaging and Synchronization 20
	2.5.1 CDA Component Reuse and Demonstration Efforts 20
	2.5.2 AME Alt-Comms Radio Control IV&V – WDI IDK 20
	2.5.3 JTRS AMF-SA API Design and Prototype 21
	2.5.4 Commercial Applications 21
	1.1 Questions Pertaining to this Document
	1.2 Terms

	2. CDA Description
	2.1 Overview
	2.1.1 CDA Background and Purpose
	2.1.2 Model-Driven and Domain-Specific Approach – Applied to Mission & Safety Critical

	2.2 API Creation
	2.2.1 API Creation Process
	2.2.2 Functional Abstraction
	2.2.3 Design and Lifecycle Artifacts
	2.2.4 Testing and Verification

	2.3 CDA Toolset
	2.3.1 Interface Management
	2.3.2 Requirements Management
	2.3.3 Capabilities-Based Design
	2.3.4 Software Development
	2.3.5 Test Development and Execution

	2.4 Software Architecture
	2.4.1 Operating Environment Abstraction Layer
	2.4.2 Service Abstraction Layer
	2.4.3 Data Messaging and Synchronization

	2.5 Other Related Efforts
	2.5.1 CDA Component Reuse and Demonstration Efforts
	2.5.2 AME Alt-Comms Radio Control IV&V – WDI IDK
	2.5.3 JTRS AMF-SA API Design and Prototype
	2.5.4 Commercial Applications

