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Abstract 
Current and projected program requirements are exceeding Department of Defense (DoD) budget and schedule constraints.  
This applies to the Army’s requirements to integrate common avionics equipment onto dissimilar rotorcraft – both manned 
and unmanned.  As such, innovative approaches are needed to address the integration costs and time.  The Common Software 
Initiative (CSI) was formed by the U. S. Army’s Product Manager of Aviation Mission Equipment (AME) to explore 
solutions for this problem.  In support of CSI, Capability Driven Architecture (CDA) has been architected and demonstrated 
to AME as an architecture designed for reuse.  It is an open-standards based architecture for integrating and deploying new 
and legacy capabilities and avionics onto Army rotorcraft.  The planned goal for CDA is 100% reuse, such that one piece of 
software may be certified and reused across multiple platforms as described in the FAA circular AC 20-148 [1].  The CDA 
architecture can be applied to all capabilities including communications, navigational, sensors, actuators, etc., and, as a proof 
of concept, it was first developed and demonstrated for radio control as CDA Radio Control (CDA-RC).  

Introduction 
The Army’s Product Manager, Aviation Mission Equipment 
(PM–AME), is seeking to implement a process by which 
common software products, to include common avionics 
integration software, can be identified, acquired, tested, and 
integrated across the disparate Army Aviation platforms. 

PM-AME has identified the need for this process through the 
Common Software Initiative (CSI).  Implementation of the 
CSI would position AME into conformance with the 
acquisition strategy outlined in Chapter 2 of the Defense 
Acquisition Guidebook [2] and with the directives of AR 70-
1 Army Acquisition Policy [3]. These two DoD documents 
outline prescribed requirements for standardization, 
commonality, and systematic reusability that will guide 
Army Aviation practices for improving budget-to-capability 
performance. 

In support of CSI, Capability Driven Architecture (CDA) 
has been demonstrated to AME as an airworthy design for 
creating reusable software components.  It is an open 
architecture for integrating and deploying new and legacy 
capabilities and avionics onto Army rotorcraft.  While 
architectures exist that can claim software reuse, few, if any, 
can claim software reuse for safety critical airworthy 
applications. 
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The planned goal for CDA is 100% reuse, such that one 
piece of software may be developed, tested, and certified 
then reused across multiple disparate platforms as described 
in the FAA circular AC 20-148 – Reusable Software 
Components [1]. 

Background 
The Army has an ongoing need to integrate Aviation 
Mission Equipment products into aviation platforms.  This 
integration can occur at aircraft delivery or as an aircraft 
upgrade.  The integration cycle includes a significant effort 
in developing software to interface to new and changing 
AME Products.   

Each platform prime contractor is responsible for developing 
the software to interface with new aviation equipment.  
Historically, equipment was introduced as mission-specific, 
and added as non-integrated (“strap-on”) equipment into 
their respective platforms. 

Today’s aviation mission equipment is highly integrated into 
the platform and moreover the same equipment is integrated 
within different platforms. 

This arrangement has lead to ad hoc development and 
stovepipe systems resulting in duplication of effort across 
the aviation platforms for integrating common aviation 
equipment.  It has also resulted in duplication of efforts 
within an aviation platform when integrating a new piece of 



aviation equipment that has similar functional capabilities to 
already integrated equipment.   

The result is that current and projected program 
requirements are exceeding budget and schedule constraints.  
To address these issues, both technological and process 
solutions must be developed within the Aviation community.  
Technological solutions must be based on the integration of 
functional capabilities across aircraft, and process solutions 
are needed to accommodate cross-platform integration and 
certification requirements.  

What follows is an overview of an architecture design along 
with process suggestions that will allow such an architecture 
to be verified, certified, and reused across the aviation fleet.  
A description of the development of the architecture for 
radio control is included along with a summary of the 
demonstrations that explored the viability of common, 
reusable software within Army Aviation.  

Motivation for Architectural Transformation 
The motivation behind the Capability Driven Architecture 
design is to provide a common interface to a category of 
similar devices, much like desktop computer applications 
have a common interface to the myriad of computer printers 
and other peripherals.  Currently, aviation applications have 
nothing similar for integrating avionics equipment. 

What does exist is a mix of disparate aviation platform 
architectures and stovepipe programs based on proprietary 
interfaces.  Illustrated in Figure 1, Source of Problem, is the 
implementation of Aviation Mission Equipment on 
Aviation’s rotary aircraft fleet.  For every Line Replaceable 
Unit (LRU) update or change, implementation-specific 
changes are required on each and every aircraft.
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Figure 1.  Source of Problem 

The personal computing (PC) industry had a similar problem 
and devised its solution decades ago.  The solution is 
architectures based on standardizing (making common) its 
interfaces.  They separated the use of a capability (e.g., 
File Print) from its implementation (e.g., bit-level 
instructions to a laser printer versus a dot matrix printer, 
etc).  The Aviation parallel for Communications is the 
Set Frequency command for their ARC-201D, ARC-231, 
etc., radios. 

Therefore, an architecture was envisioned that would be 
non-platform and non-LRU specific implementations.  It 
should enable reuse through abstraction and extensibility, 

and be architected to reduce the time and effort associated 
with integrating common equipment across various 
dissimilar platforms.  The Capability Driven Architecture 
(CDA) is one such approach. 

The CDA approach emphasizes the integration of 
capabilities rather than integration of the specific systems, 
sub-systems, or hardware.  It should apply to integrating 
grouped capability sets, such as those used by 
communications equipment, navigational aids, sensors, 
actuators, etc.  As a proof of concept, CDA was first 
developed and a prototype demonstrated for radio control as 
CDA-RC. 



To date, there have been two successful demonstrations of 
software reuse using CDA-RC on three different platforms.  
The first demonstration occurred at the U.S. Army 
Technology Integration Center.  The second demonstration 
occurred at the Aviation Systems Integration Facility 
(ASIF).  

The first demonstration implemented the radio control 
software for two tactical radios (ARC-210D and ARC-231) 
for one platform.  The second demonstration implemented a 
subset of the same radio control software for one tactical 
radio onto two airworthy platforms. 

Illustrated in Figure 2 is the conceptual “Solution” – an 
architecture based on a set of common interface standards 
and common middleware control code or translation 
software to buffer the target platforms from product changes.  
The specifics of this architecture, Capability Driven 
Architecture, are described below. 
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• Integrate the capability, not the product; for example, provide identical interfaces to 
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Figure 2.  The Solution 

Capability Driven Architecture Overview 
Abstraction 
The key to common, reusable software is being able to 
isolate the software from the differences between the various 
platforms and avionics.  By isolating device control software 
from differences between platforms, the software becomes 
platform independent and reusable across the platforms.  By 
isolating application software from differences between 
avionic devices, the platform applications become device 
independent and reusable with different devices.   

For these reasons, CDA replaces platform-unique integration 
code with two layers of abstraction, an operating 
environment (OE) abstraction layer and a device abstraction 
layer (see Figure 3).   

Through these two layers of abstraction, CDA effectively 
reduces the duplication of integration efforts in two ways, 
across the platforms and within a platform.  Firstly, the 
integration efforts across platforms are reduced since the 
software for controlling common avionic equipment is 
platform independent and can be used by all platforms.  
Secondly, the integration efforts within a platform are 
reduced since virtually an entire category of devices is 
integrated into a platform by using a single interface.  This 
means that different devices in the same category become 
largely interchangeable so that the addition of a new device 
or swapping with a similar device having similar 
functionality requires little effort. 
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Figure 3.  Aviation Platform and CDA Layer Overview 

Operating Environment Abstraction Layer   The oper-
ating environment (OE) consists of a platform’s hardware 
and computer operating system − essentially those parts of a 
system that define the platform to a CDA implementation.  
To remain platform independent, the implementation code 
does not communicate directly with the operating system or 
hardware.  Instead, the implementation accesses OS services 
and other protocols, such as threads and timer services or IO 
protocols, through the interfaces defined in the OE 
abstraction layer. 
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Figure 4.  The OE Abstraction Layer 

Device Abstraction Layer   The device abstraction layer 
provides the interface to the user application.  It contains the 
bulk of the CDA implementation and allows platform 
application code to be independent of the devices integrated 
on a platform.  This abstraction layer is where actual 
integration of devices takes place.   

To perform this abstraction, a category of similar devices is 
broken down into its core Capabilities.  A Capability is a 
collection of functions with a related purpose.  For example 
the functions that change the volume and squelch belong to 

the Voice Capability.  Within in the category of radios, the 
functions that change the frequency and output power 
belong in the general Radio Capability.  The radio category 
also has many other Capabilities such as Message, 
SATCOM (satellite communications), Test (for built-in 
tests), and Crypto (for COMSEC functions) to name a few. 

At the top level of a Capability is the capability driven 
interface (see Figure 5).  This interface defines the API used 
by platform applications to access Capability functions 
regardless of the device being controlled.  This enables 
integrators to shift from the convention of integrating 
devices (device-centric) to a practice of integrating 
Capabilities (Capability-centric).  Thus, the code for a well-
designed application using a particular Capability will not 
need to change when replacing one device with a different 
device that has the same Capability [e.g., replacing an ARC-
201 implementation of Single Channel Ground and Airborne 
Radio System (SINCGARS) with a Joint Tactical Radio 
System (JTRS) implementation of SINCGARS].  Yet, 
Capability Driven Architecture still allows a device-centric 
approach for an application by regarding a collection of 
Capabilities as a particular device.  In other words, the 
application can be implemented using grouped Capabilities 
such that each group is treated as a device.  This technique 
can allow current applications to use CDA with minimal 
modification, albeit the interchangeability of like devices 
may be limited. 
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Figure 5.  The Device Abstraction Layer 

Below the capability driven interface is the Capability 
implementation.  The implementation contains the code that 
is specific to the various devices and is hidden from the 
platform applications by the capability interface. 

 



A Concrete Exercise – CDA-RC 
 
Currently, there have been two successful CDA-RC 
demonstrations through the AME Common Software 
Initiative.  The first CDA-RC demonstration integrated the 
full set of functionality of two radios, the ARC-201D and the 
ARC-231, onto the Army Aviation Systems Integration 
Facility’s Aviation Test and Integration Center (ATIC) 
platform.  Control for both radios was implemented using 
one common interface.  The second demonstration 
integrated the same CDA-RC software on two disparate 
aviation platforms, the MCAP II and the CAAS platforms, 
and successfully controlled a subset of functionality of an 
ARC-201D on these two platforms. 

The demonstrations of Capability Driven Architecture for 
radio control were a combined exercise in rapid 
development and integration of common aviation software 
culminating with two demonstrations.  The U.S. Army’s 
Product Manager of Aviation Mission Equipment and the 
Aviation Applied Technology Directorate sponsored the 
demonstrations.   

The demonstrations were concerted efforts of TES (Tucson 
Embedded Systems), the Apache Integrator, the Chinook 
Integrator, and the ATIC Integrator.  TES served as a third-
party developer of common software 

Development 
The development environment consisted of a Linux PC with 
a Condor QPCI 1553 interface card, two ARC-201D radios, 
and two ARC-231 radios.   

The process of abstraction constituted defining the radio 
control requirements.  To begin, TES analyzed the interface 
control documents of five LRUs, abstracting the specific 
radio functions into common function calls belonging to the 
CDA-RC API (see Figure 6).  (In addition to the ARC-201D 
and ARC-231, several legacy radios were used to obtain a 
more generalized abstraction.)  This iterative process 
resulted in defining the radio control Capabilities by 
mapping data fields of MIL-STD-1553 messages to function 
parameters and by review of functional relationships and 
radio commonalities.  

To illustrate mapping specific radio functions into a 
common API, both an ARC-201D and an ARC-231 are 
capable of changing the radio frequency on a single channel.  
However, the MIL-STD-1553 message used by the ARC-
201D represents frequency with four fields (the tens, ones, 
tenths, and hundredths digits of frequency expressed in 
megahertz).  The message used by the ARC-231 represents 
frequency in a single field expressed in kilohertz as a 32-bit 
integer.  These fields were mapped to a single parameter of a 
function called SetFrequency.  The SetFrequency function 
belonged to the Radio Capability.  The Radio Capability 

contained other general radio related functions such as 
SetPower for changing the transmit output power. 
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Figure 6.  Iterative Abstration Process 

 

Within the CDA-RC API, one radio is represented by many 
Capabilities.  Though all the radios are different, Table 1 
shows their capabilities can be abstracted such that the 
overlap is sufficient to justify a common interface, and 
Figure 7 further illustrates how the process reduces 
documentation used for integration from many to few. 

 

 



Table 1.  Abstracted Capabilities for Radio Control 

Capability ARC-201D ARC-231 
Channel 

(handles presets) x x 

Crypto x x 
DAMA  x 
HaveQuick  x 
Message x x 
Modem x x 
Radio x x 
SatCom  x 
SINCGARS x x 
Test 

(manages BITE) x x 

Voice x x 
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Figure 7.  CDA Reduces Many MICDs to One 

A similar abstraction process was followed to develop an 
operating environment (OE) API.  The operating environ-
ment API allowed CDA-RC implementations to use 
operating system (OS) services such as threads, mutual 
exclusion, file operations, and timers; yet it isolated the 
implementations from the specifics of every operating 
system on which CDA-RC ran.   

The OE API also isolated CDA-RC from the specifics of 
sending and receiving messages to a radio LRU via the 
Bus1553 message set.  In the development environment, 
TES implemented the OE abstraction to send messages 
directly to the MIL-STD-1553 bus.   

In the demonstration environments, the integrators imple-
mented this portion of the OE abstraction to send messages 
to an IO handler via internet protocol.  Moreover, since TES 
was unable to test in the target environments, the whole of 
the OE abstraction implementation was to be open and the 

source was delivered to the integrators in case any platform-
specific alterations were needed.   

Integration and Demonstrations 
Commonality Working Group   The U.S. Army’s Product 
Manager, Aviation Mission Equipment (PM-AME) and the 
Aviation Applied Technology Directorate (AATD) co-
sponsored the Commonality Working Group common 
software demonstrations.  The efforts were an experiment of 
how OEM platform integrators and third-party developers 
can come together to integrate avionics equipment with 
common software.   

This effort examined the processes, documentation, and 
implementation of integrating common reusable control 
code of an ARC-201D radio onto Army Aviation platforms 
using a subset of CDA-RC functions. 

The integration environments of CDA-RC for the 
Commonality Working Group involved two disparate 
platform architectures.  One OEM integrated and 
demonstrated CDA-RC onto the MCAP II 
(Manned/unmanned Common Architecture Program phase 
2) architecture–the architecture to be used in the future AH-
64D Apache.  Another OEM integrated and demonstrated 
onto the CAAS (Common Aviation Architecture System) 
architecture–the architecture is used in the MH-47 and MH-
60 helicopters (and scheduled for use in the CH-47 Chinook, 
UH-60 Blackhawk, and the ARH-70 helicopters).  

Tucson Embedded Systems (TES) worked with AME’s 
OEMs to assist their integration efforts of the CDA-RC 
software on the MCAP-II and CAAS platforms respectively. 

The integration effort included: 

• Initializing the ARC-201D for single channel tuning and 
voice only, 

• Providing interface to (integrating to an existing 
MCAP-II and CAAS HMI or human-machine interface) 
and demonstrating single channel tuning (volume, 
power, squelch, frequency), and 

• Providing documentation that describes the methods and 
strategies used to mask and mitigate the OSA 
differences (MCAP-II and CAAS) in order to facilitate 
the use of the common software across platforms. 

The specific scope of the integration effort included the 
entire operating environment API, but only a subset of the 
application-level API.  The following lists the specific 
functions that were integrated during the CWG Common 
Software demonstration. 

 

 



Application Level API (subset): 

Voice::SetVolume Voice::GetVolume 
Voice::SetSquelch Voice::GetSquelch 
Radio::SetFrequency Radio::GetFrequency 
Radio::SetPower Radio::GetPower 

Operating Environment API: 

Thread::SpawnThread Thread::WaitForThread 
Thread::ProcessThread Thread::StopThread 
Thread::KillThread Thread::IsActiveThread 
Thread::SetDelay Thread::Delay 
Thread::IsTerminatedThread 
Thread::IsFinishedExecution 
Thread::GetSpawnedThreadID 
Thread::GetCurrentThread 

File::Open File::Close 
File::Write File::Read 
File::ReadLine File::IsOpened 
File::Flush 

Timeout::Delay Timeout::DelayDifference 
Timeout::End Timeout::GetInterval 
Timeout::Slide Timeout::Start 
Timeout::SystemTimeStamp 

Mutex::Lock Mutex::TryLock 
Mutex::UnLock 

Bus1553::Init Bus1553::Receive 
Bus1553::Send 

Army Technology Integration Center   The purpose of the 
Army Technology Integration Center (ATIC) program was 
to establish an open architecture, system of systems, 
airframe-independent, system integration test facility.  The 
ATIC was to increase performance and commonality, and 
reduce the cost of helicopter mission equipment packages by 
facilitating rapid integration and evaluation.  During its 
development and construction, the ATIC Integrator looked 
to CDA-RC to provide radio control for their phase I 
demonstration of the ATIC's abilities. 

For the Phase I demonstration, the ATIC Integrator 
integrated CDA-RC into a VxWorks environment.  While 
demonstrating ATIC’s reconfigurable abilities, the 
demonstration also presented the advantages of the CDA 
device abstraction layer which enable the changing of 
devices without changing the code of the applications that 
use them. 

The demonstration started by exercising all the functionality 
of the ARC-201D radio through the CDA-RC Capabilities 
with the ATIC HMI.  Then using the same HMI without 
changes, the Capabilities that were demonstrated on the 
ARC-201D were also demonstrated on the ARC-231 along 
with the ARC-231’s additional functionality. 

Lessons Learned 
The integration efforts of the CDA-RC for the Commonality 
Working Group (CWG) proved insightful.  Lessons learned 
document [4,5] identified programmatic, technical, and 
process related issues. 

Seven lessons were identified: (1) Understand the target 
platform(s), (2) Obtain a capable common software 
repository, (3) Control the configuration, (4) Make the 
documentation more useful for integration, (5) Address 
programmatic licensing issues early, (6) Make allowances 
for the newly-defined developer-integrator process, and (7) 
Understand that open systems architectures are not entirely 
open. 

These lessons are described along with suggestions as 
enumerated. 

1) Understand the Target Platform(s) – Although there were 
several technical exchange meetings between the common 
software developer and the integrating OEMs, original 
assumptions of target architectures were incorrect which 
resulted in time and effort building and testing against 
incorrect target platforms.  A Government-owned Aviation 
Systems Integration Facility (ASIF) should be developed to 
support the common software development process.  The 
ASIF should be loaded with target architecture build suites 
along with mobile build, development, and integration labs.  
These build suites need to be available to all participants, 
both Developers and OEMs, to assist with the development, 
integration, and validation of future common software 
efforts.  Another white paper [6] describes such a 
development environment. 

2) Obtain a Capable Common Software Repository – The 
Army Knowledge Online (AKO) system was used as the 
central shared repository.  This repository both worked and 
had capability shortcomings.  While the repository provided 
an integration-neutral area to share files and information, as 
a tool, the AKO was unfriendly, had poor access control 
features, and was difficult to upload batches or sets of files 
from multiple directories.  Therefore, suggested was to use a 
tool other than the Army Knowledge Online (AKO) system.  
The topic and issue of Common Software Licenses is 
described below in (5). 

3) Control the Configuration – common software files 
should be better managed and configurations synchronized.  
An issue occurred when the Integrators linked to non-
synchronized software.  This issue surfaced when the 
Developer modified implementations of header files to assist 
(we tried to simplify) integration efforts (i.e., TES moved 
#defines for OE specifics) and these files were not re-
synchronized causing Integrator builds issues.  Participants 
should weigh and accept the trade-off of being in a real-time 
prototype rapid-development environment versus a more-
formal production environment.  In a more-formal 



environment, configuration management (CM) issues are 
better controlled, but at a cost of extra time and resources.  
The CWG accepted the risk of working within the less-
formal proof-of-concept rapid-development environment in 
order to expedite the prototype process and meet its short 
demonstration schedule. 

4) Make the documentation more useful for integration – 
The original interface control document (ICD) provided to 
the Integrators was not adequate as a Developer/Integrator’s 
User Guide.  Participants should establish and maintain an 
“open dialog.”  This was critical to address questions so that 
integration efforts could continue to move forward.  On-site 
visits and open communications were essential for complex 
integration efforts to succeed.  The CWG actually did very 
well here and forged relationships that will serve and assist 
with AME’s future goals for the CSI. 

5) Address programmatic licensing issues early – Proprietary 
markers on software files and licensing issues hampered 
initial file sharing among participants.  A part of this study 
was to determine the How, that is how to develop common 
software from both programmatic and technical standpoints.  
The FAA AC 20-148 Reusable Software Components [1] 
identifies that these types of undertakings require 
considerable up-front planning and suggest allotting time on 
“Stakeholders Agreement” and defining the communication 
channels and roles among stakeholders.  We simply 
underestimated the need to address business interests from 
the corporate level. 

6) Make allowances for newly defined developer-to-
integrator processes – The CWG agreed to conduct a proof 
of concept and rapid prototype development demonstrating 
that common software can be used on disparate platforms.  
To accomplish the effort, engineer-to-engineer interfaces 
and exchanges occurring in an experimental real-time update 
fashion with both software and documentation was required.  
As a result, CM issues resulted (described above).  These 
issues could have been avoided in a more formal 
environment, but at an increase to both project schedule and 
program cost.  Participants should understand, discuss, and 
accept trade-offs.  Maintain open dialog with Participants 
and status the Customer of both progress and issues.  
Collectively, we performed well here.  We had a project slip, 
but all issues were well communicated to our Customers.  

7) Understand that open systems architectures are not 
entirely open – Access to target architecture software and 
hardware was hampered (and remains hampered) due to 
OEM proprietary issues.  The MCAP-II platform is based on 
a proprietary RTOS, a variant of the commercial version.  
The CAAS platform requires proprietary hardware.  Efforts 
to develop and integrate common software require that the 
Developer have the exact environments when developing for 
and transferring to multiple target architectures.  To address 

proprietary OEM hardware and software issues, a 
government-owned Aviation Systems Integration Facility 
(ASIF) is suggested.  ASIF would be loaded with target 
architecture build suites.  These build suites need to be 
available to all participants, both Developers and Platform 
Integrators, to assist with the development, integration, and 
validation of future common software efforts.  The ASIF 
having the target architectures and the hardware and 
software configurations can communicate these 
configurations to all common software Developers. 

Similar efforts – WDI 
The Chinook Integrator is developing the Well-Defined 
Interface (WDI) with similar design aspects of the CDA.  
The WDI will first target the CH-47 Cargo platform, with 
the potential to be integrated and reused across the other 
CAAS platforms. 

While the WDI has many noteworthy aspects it was not 
designed for reuse across the entire suite of dissimilar 
Aviation platforms.  In anticipation, the Army’s Aviation 
Mission Equipment may task an effort to investigate and 
develop the adapters for the MCAP-II platform. 

Recommendations and Next Steps 
PM-AME/AATD Common Software Demonstration was a 
two-part effort.  First, it was shown that Common Reusable 
Software could be integrated on disparate platforms.  
Second, documentation was created describing the How To 
and Lessons Learned [4,5] both from the Developer and 
Integrator viewpoints.  Therefore, AME (and/or other DoD 
organization) can leverage the effort if they decide to move 
forward with additional Common Software efforts. 

With these lessons learned and the success of the common 
software demonstration, next steps could include those to 
improve and expand on the CDA concept and approach.  
They could move the CDA-RC demonstration forward from 
lab experiment to an airworthy Reusable Software 
Component (RSC) for AME Communications.   

Along these lines, the FAA’s AC 20-148[1] identifies 
guidelines for RSC.  The guidelines call for a Reuse Plan 
that includes a Project Plan.  The project plan must overtly 
claim the intention of complying with AC 20-148 and Army 
Aviation certification requirements.  This requires the 
compliance with the RTCA DO-178B [7]: planning, 
documentation, standards, testing, tracing, configuration 
management, auditing, etc.  Naturally, the safety aspects of 
the RSC use on require significant planning.  Within the list 
above, issues we observed with respect to Make the 
Documentation Useful for Integration (4), Address the 
Programmatic Issues Early (5), and The Developer-
Integrator Process needs to Mature (6) would be addressed. 

The Reuse Plan would also identify the types of systems and 
their intended scope of use – addressing the Understand the 



Target Platform (1).  The RSC project plan must identify the 
systems it is to be used on and speak to the implications this 
scope of use has on the RSC design.  Specific direction must 
be given to each system (various aviation platforms) 
incorporating the RSC or, at a minimum, the issues that are 

likely to occur and the various issues affecting each platform 
identified.  This latter part would address The Open Systems 
Architectures are not entirely Open (7). 

 

Processes and Visions for Reusable Software Components 
 
The Army’s Assistant Secretary of the Army 
(Acquisition, Logistics, and Technology) is spearheading 
efforts [8] for “rapid equipping,” “rapid fielding,” and 
transforming the Army’s acquisition processes.  PM-
AME’s efforts with CSI, CDA-RC, and WDI are moving 
toward those goals. 

The common software demonstration could serve as the 
cornerstone for AME’s transformation toward its 
Common Software Initiative and goals for common 
reusable aviation software across its Aviation Fleet. 

As mentioned, the planned goal for CDA is 100% reuse, 
such that one piece of software may be developed, tested, 
and certified then reused across multiple disparate 
platforms as described in the FAA circular AC 20-148 – 
Reusable Software Components [1]. 

A vision was presented during the CWG Demonstration.  
It was a vision of Reusable Software Components (RSC), 
a process for how common reusable software could be 

produced, tested, and integrated across the Aviation fleet 
in a cost-effective manner. 

The process, aligned with FAA’s AC 20-148[1], implies 
third-party developers could produce airworthy reusable 
software components (RSC) and reusable software 
verification components (RVC) which meet DO-178B 
guidelines, build and execute system-level tests at a 
government-owned ASIF, then with a high level of 
confidence rebuild the RSC and RVC on platform-
specific SILs and re-run the RVC saving both time and 
money.  On completion, the components then proceed to 
flight-testing.   

Through the process, an airworthy certification is 
achieved and an acceptance letter of the RSC and its 
reusable artifacts are presented back to the Developer, for 
reuse at subsequent platform SILs, etc. 
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Figure 8.  Vision for Reusable Software Components 
 



Other necessary components for the vision for reusable 
software components are: 1) an Aviation common 
software repository, 2) common aviation interface 
standards and common middleware aviation software 
based on requirements that specifically call for reuse, and 
3) acceptance to an airworthy certification process based 
on the guidelines of the AC 20-148 and that which is 
acceptable to airworthy DO-178B requirements.  The 
Aviation and Missile Research, Development and 
Engineering Center's (AMRDEC) Software Engineering 

Directorate (SED) verifies life-cycle artifacts and certifies 
platform software.  The PM-AME has been working with 
SED on this reuse vision. 

The long-term vision for AME should include an outline 
of AME Best Business Practices [9, 10, 11] for not just 
communications, but for all of the AME Functional Areas 
(Communications, Mission Planning, Interoperability, and 
Navigation) using the CSI and CDA concepts as they 
evolve. 

Conclusions 
 

The Capability Driven Architecture (CDA) has been 
demonstrated to AME as an airworthy design for creating 
reusable software components.  It is an open architecture for 
integrating and deploying new and legacy capabilities and 
avionics onto Army rotorcraft platforms.  While 
architectures exist that can claim software reuse, few, if any, 
can claim software reuse for safety critical airworthy 
applications. 

The common software demonstrations, which took 
Capability Driven Architecture for Radio Control (CDA-
RC) software for two tactical radios and integrated it on 
three disparate Aviation platforms has been a success.  
Combining these two demonstrations, once piece of software 
operating two LRUs (ARC-201D and ARC-231) were 
integrated on three disparate platforms, and verified using 
one test suite. 

The knowledge and experience gained from this 
demonstration has advanced the methods of common 
software development, and clarified a vision that will further 
the implementation of the Army’s Common Software 
Initiative. 

For additional information about CDA, contact PM-AME or 
Tucson Embedded Systems, Inc. at 520.575-7283x109, Mr. 
Dennis Kenman, TES–Army Program Manager. 

 

Figure 9 - CDA-RC on 3 Airworthy Platforms 
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