
Capability Driven Architecture:
An Approach to Airworthy Reusable Software

 Richard Zepeda Stephen Simi
 Software Engineer Project Manager

Dennis Kenman Sean Mulholland Elden Crom Virgil Swadley

 Program Manager System Architect Software Engineer Software Engineer

Tucson Embedded Systems, Inc.
Tucson Arizona

dennisk@tucsonembedded.com

Abstract
Current and projected program requirements are exceeding Department of Defense (DoD) budget and schedule constraints.
This applies to the Army’s requirements to integrate common avionics equipment onto dissimilar rotorcraft – both manned
and unmanned. As such, innovative approaches are needed to address the integration costs and time. The Common Software
Initiative (CSI) was formed by the U. S. Army’s Product Manager of Aviation Mission Equipment (AME) to explore
solutions for this problem. In support of CSI, Capability Driven Architecture (CDA) has been architected and demonstrated
to AME as an architecture designed for reuse. It is an open-standards based architecture for integrating and deploying new
and legacy capabilities and avionics onto Army rotorcraft. The planned goal for CDA is 100% reuse, such that one piece of
software may be certified and reused across multiple platforms as described in the FAA circular AC 20-148 [1]. The CDA
architecture can be applied to all capabilities including communications, navigational, sensors, actuators, etc., and, as a proof
of concept, it was first developed and demonstrated for radio control as CDA Radio Control (CDA-RC).

Introduction
The Army’s Product Manager, Aviation Mission Equipment
(PM–AME), is seeking to implement a process by which
common software products, to include common avionics
integration software, can be identified, acquired, tested, and
integrated across the disparate Army Aviation platforms.

PM-AME has identified the need for this process through the
Common Software Initiative (CSI). Implementation of the
CSI would position AME into conformance with the
acquisition strategy outlined in Chapter 2 of the Defense
Acquisition Guidebook [2] and with the directives of AR 70-
1 Army Acquisition Policy [3]. These two DoD documents
outline prescribed requirements for standardization,
commonality, and systematic reusability that will guide
Army Aviation practices for improving budget-to-capability
performance.

In support of CSI, Capability Driven Architecture (CDA)
has been demonstrated to AME as an airworthy design for
creating reusable software components. It is an open
architecture for integrating and deploying new and legacy
capabilities and avionics onto Army rotorcraft. While
architectures exist that can claim software reuse, few, if any,
can claim software reuse for safety critical airworthy
applications.

Presented at the American Helicopter Society 63rd Annual
Forum, Virginia Beach, VA, May 1-3, 2007.
Copyright © 2007 by the American Helicopter Society
International, Inc. All rights reserved.

The planned goal for CDA is 100% reuse, such that one
piece of software may be developed, tested, and certified
then reused across multiple disparate platforms as described
in the FAA circular AC 20-148 – Reusable Software
Components [1].

Background
The Army has an ongoing need to integrate Aviation
Mission Equipment products into aviation platforms. This
integration can occur at aircraft delivery or as an aircraft
upgrade. The integration cycle includes a significant effort
in developing software to interface to new and changing
AME Products.

Each platform prime contractor is responsible for developing
the software to interface with new aviation equipment.
Historically, equipment was introduced as mission-specific,
and added as non-integrated (“strap-on”) equipment into
their respective platforms.

Today’s aviation mission equipment is highly integrated into
the platform and moreover the same equipment is integrated
within different platforms.

This arrangement has lead to ad hoc development and
stovepipe systems resulting in duplication of effort across
the aviation platforms for integrating common aviation
equipment. It has also resulted in duplication of efforts
within an aviation platform when integrating a new piece of

aviation equipment that has similar functional capabilities to
already integrated equipment.

The result is that current and projected program
requirements are exceeding budget and schedule constraints.
To address these issues, both technological and process
solutions must be developed within the Aviation community.
Technological solutions must be based on the integration of
functional capabilities across aircraft, and process solutions
are needed to accommodate cross-platform integration and
certification requirements.

What follows is an overview of an architecture design along
with process suggestions that will allow such an architecture
to be verified, certified, and reused across the aviation fleet.
A description of the development of the architecture for
radio control is included along with a summary of the
demonstrations that explored the viability of common,
reusable software within Army Aviation.

Motivation for Architectural Transformation
The motivation behind the Capability Driven Architecture
design is to provide a common interface to a category of
similar devices, much like desktop computer applications
have a common interface to the myriad of computer printers
and other peripherals. Currently, aviation applications have
nothing similar for integrating avionics equipment.

What does exist is a mix of disparate aviation platform
architectures and stovepipe programs based on proprietary
interfaces. Illustrated in Figure 1, Source of Problem, is the
implementation of Aviation Mission Equipment on
Aviation’s rotary aircraft fleet. For every Line Replaceable
Unit (LRU) update or change, implementation-specific
changes are required on each and every aircraft.

Multiple, unique, and repetitive SW integrations to common productsMultiple, unique, and repetitive SW integrations to common products

Each platform:
– Develops “unique” software to integrate Avionic products at the low-level interfaces.
– A-Kit development is tightly coupled to detailed B-Kit interface definition.
– Maintains expertise on the low-level interfaces to each Avionic product.

Future Protocol

?
Future

LRU

Low Level IP Packets
JTRS

ARC-231

Low Level 1553 Message

Multiple, unique, and repetitive SW integrations to common productsMultiple, unique, and repetitive SW integrations to common products

Each platform:
– Develops “unique” software to integrate Avionic products at the low-level interfaces.
– A-Kit development is tightly coupled to detailed B-Kit interface definition.
– Maintains expertise on the low-level interfaces to each Avionic product.

Future Protocol

?
Future

LRU
?

Future

LRU

Low Level IP Packets
JTRS

ARC-231

Low Level 1553 Message

Figure 1. Source of Problem

The personal computing (PC) industry had a similar problem
and devised its solution decades ago. The solution is
architectures based on standardizing (making common) its
interfaces. They separated the use of a capability (e.g.,
File Print) from its implementation (e.g., bit-level
instructions to a laser printer versus a dot matrix printer,
etc). The Aviation parallel for Communications is the
Set Frequency command for their ARC-201D, ARC-231,
etc., radios.

Therefore, an architecture was envisioned that would be
non-platform and non-LRU specific implementations. It
should enable reuse through abstraction and extensibility,

and be architected to reduce the time and effort associated
with integrating common equipment across various
dissimilar platforms. The Capability Driven Architecture
(CDA) is one such approach.

The CDA approach emphasizes the integration of
capabilities rather than integration of the specific systems,
sub-systems, or hardware. It should apply to integrating
grouped capability sets, such as those used by
communications equipment, navigational aids, sensors,
actuators, etc. As a proof of concept, CDA was first
developed and a prototype demonstrated for radio control as
CDA-RC.

To date, there have been two successful demonstrations of
software reuse using CDA-RC on three different platforms.
The first demonstration occurred at the U.S. Army
Technology Integration Center. The second demonstration
occurred at the Aviation Systems Integration Facility
(ASIF).

The first demonstration implemented the radio control
software for two tactical radios (ARC-210D and ARC-231)
for one platform. The second demonstration implemented a
subset of the same radio control software for one tactical
radio onto two airworthy platforms.

Illustrated in Figure 2 is the conceptual “Solution” – an
architecture based on a set of common interface standards
and common middleware control code or translation
software to buffer the target platforms from product changes.
The specifics of this architecture, Capability Driven
Architecture, are described below.

Capability Driven Architecture
Provides COMMON middleware to buffer platforms from product changes

Capability Driven Architecture
Provides COMMON middleware to buffer platforms from product changes

• Develop integration software that is common (not “unique”) across platforms.

• Integrate the capability, not the product; for example, provide identical interfaces to
SINCGARS satisfied by ARC-201, ARC 231, and JTRS.

– Remove the platform’s burden of implementing low-level interfaces to Avionics products.
– Platforms are insulated from Avionics product changes not affecting functionality.
– De-couples A-Kit/B-Kit development cycle.

Radio->SetFrequency(50);

Radio->SetFrequency(50);

Future Protocol

ReusableReusable

Radio->SetFrequency(50);

IP Packet JTRSCDA

ARC-231

1553 Message

?
Future

LRU

Capability Driven Architecture
Provides COMMON middleware to buffer platforms from product changes

Capability Driven Architecture
Provides COMMON middleware to buffer platforms from product changes

• Develop integration software that is common (not “unique”) across platforms.

• Integrate the capability, not the product; for example, provide identical interfaces to
SINCGARS satisfied by ARC-201, ARC 231, and JTRS.

– Remove the platform’s burden of implementing low-level interfaces to Avionics products.
– Platforms are insulated from Avionics product changes not affecting functionality.
– De-couples A-Kit/B-Kit development cycle.

Radio->SetFrequency(50);

Radio->SetFrequency(50);

Future Protocol

Future Protocol

ReusableReusable

Radio->SetFrequency(50);

IP Packet JTRSCDA

ARC-231

1553 Message

?
Future

LRU
?

Future

LRU

Figure 2. The Solution

Capability Driven Architecture Overview
Abstraction
The key to common, reusable software is being able to
isolate the software from the differences between the various
platforms and avionics. By isolating device control software
from differences between platforms, the software becomes
platform independent and reusable across the platforms. By
isolating application software from differences between
avionic devices, the platform applications become device
independent and reusable with different devices.

For these reasons, CDA replaces platform-unique integration
code with two layers of abstraction, an operating
environment (OE) abstraction layer and a device abstraction
layer (see Figure 3).

Through these two layers of abstraction, CDA effectively
reduces the duplication of integration efforts in two ways,
across the platforms and within a platform. Firstly, the
integration efforts across platforms are reduced since the
software for controlling common avionic equipment is
platform independent and can be used by all platforms.
Secondly, the integration efforts within a platform are
reduced since virtually an entire category of devices is
integrated into a platform by using a single interface. This
means that different devices in the same category become
largely interchangeable so that the addition of a new device
or swapping with a similar device having similar
functionality requires little effort.

Aviation Platform

Operating System IO Protocols

Platform Hardware Device A Device B Device C De

Application Layer
Platform Application

Platform Application Platform Application

Device Abstraction Layer
CapabilityCapability Ca Capability Capability Capability

OE Abstraction Layer
Thread Timer Mutex File Bus1553

Aviation Platform

Operating System IO Protocols

Platform Hardware Device A Device B Device C De

Application Layer
Platform Application

Platform Application Platform Application

Device Abstraction Layer
CapabilityCapability Ca Capability Capability Capability

OE Abstraction Layer
Thread Timer Mutex File Bus1553

Aviation Platform

Operating System IO Protocols

Platform Hardware Device A Device B Device C De

Application Layer
Platform Application

Platform Application Platform Application
Application Layer

Platform ApplicationPlatform Application
Platform ApplicationPlatform Application Platform ApplicationPlatform Application

Device Abstraction Layer
CapabilityCapability Ca Capability Capability Capability

Device Abstraction Layer
CapabilityCapabilityCapabilityCapability Ca Ca CapabilityCapability CapabilityCapability CapabilityCapability

OE Abstraction Layer
Thread Timer Mutex File Bus1553

OE Abstraction Layer
ThreadThread TimerTimer MutexMutex FileFile Bus1553Bus1553

Figure 3. Aviation Platform and CDA Layer Overview

Operating Environment Abstraction Layer The oper-
ating environment (OE) consists of a platform’s hardware
and computer operating system − essentially those parts of a
system that define the platform to a CDA implementation.
To remain platform independent, the implementation code
does not communicate directly with the operating system or
hardware. Instead, the implementation accesses OS services
and other protocols, such as threads and timer services or IO
protocols, through the interfaces defined in the OE
abstraction layer.

Operating Environment Abstraction Layer

Thread Interface

Thread
Interface

Implementation

Timer Interface

Timer Interface
Implementation

Mutex I

Mute
Interf
Imple

Operating Environment Abstraction Layer

Thread Interface

Thread
Interface

Implementation

Thread Interface

Thread
Interface

Implementation

Timer Interface

Timer Interface
Implementation

Timer Interface

Timer Interface
Implementation

Mutex I

Mute
Interf
Imple

Mutex I

Mute
Interf
Imple

Figure 4. The OE Abstraction Layer

Device Abstraction Layer The device abstraction layer
provides the interface to the user application. It contains the
bulk of the CDA implementation and allows platform
application code to be independent of the devices integrated
on a platform. This abstraction layer is where actual
integration of devices takes place.

To perform this abstraction, a category of similar devices is
broken down into its core Capabilities. A Capability is a
collection of functions with a related purpose. For example
the functions that change the volume and squelch belong to

the Voice Capability. Within in the category of radios, the
functions that change the frequency and output power
belong in the general Radio Capability. The radio category
also has many other Capabilities such as Message,
SATCOM (satellite communications), Test (for built-in
tests), and Crypto (for COMSEC functions) to name a few.

At the top level of a Capability is the capability driven
interface (see Figure 5). This interface defines the API used
by platform applications to access Capability functions
regardless of the device being controlled. This enables
integrators to shift from the convention of integrating
devices (device-centric) to a practice of integrating
Capabilities (Capability-centric). Thus, the code for a well-
designed application using a particular Capability will not
need to change when replacing one device with a different
device that has the same Capability [e.g., replacing an ARC-
201 implementation of Single Channel Ground and Airborne
Radio System (SINCGARS) with a Joint Tactical Radio
System (JTRS) implementation of SINCGARS]. Yet,
Capability Driven Architecture still allows a device-centric
approach for an application by regarding a collection of
Capabilities as a particular device. In other words, the
application can be implemented using grouped Capabilities
such that each group is treated as a device. This technique
can allow current applications to use CDA with minimal
modification, albeit the interchangeability of like devices
may be limited.

Device Abstraction Layer

Capability

Capability Driven Interface

Capability Implementation

Device
A

Specific
Code

Device
B

Specific
Code

Device
C

Specific
Code

Cap

Cap

Devi
A

Spec
Co

Device Abstraction Layer

Capability

Capability Driven Interface

Capability Implementation

Device
A

Specific
Code

Device
B

Specific
Code

Device
C

Specific
Code

Capability

Capability Driven Interface

Capability Implementation

Device
A

Specific
Code

Device
B

Specific
Code

Device
C

Specific
Code

Device
A

Specific
Code

Device
B

Specific
Code

Device
C

Specific
Code

Cap

Cap

Devi
A

Spec
Co

Cap

Cap

Devi
A

Spec
Co

Figure 5. The Device Abstraction Layer

Below the capability driven interface is the Capability
implementation. The implementation contains the code that
is specific to the various devices and is hidden from the
platform applications by the capability interface.

A Concrete Exercise – CDA-RC

Currently, there have been two successful CDA-RC
demonstrations through the AME Common Software
Initiative. The first CDA-RC demonstration integrated the
full set of functionality of two radios, the ARC-201D and the
ARC-231, onto the Army Aviation Systems Integration
Facility’s Aviation Test and Integration Center (ATIC)
platform. Control for both radios was implemented using
one common interface. The second demonstration
integrated the same CDA-RC software on two disparate
aviation platforms, the MCAP II and the CAAS platforms,
and successfully controlled a subset of functionality of an
ARC-201D on these two platforms.

The demonstrations of Capability Driven Architecture for
radio control were a combined exercise in rapid
development and integration of common aviation software
culminating with two demonstrations. The U.S. Army’s
Product Manager of Aviation Mission Equipment and the
Aviation Applied Technology Directorate sponsored the
demonstrations.

The demonstrations were concerted efforts of TES (Tucson
Embedded Systems), the Apache Integrator, the Chinook
Integrator, and the ATIC Integrator. TES served as a third-
party developer of common software

Development
The development environment consisted of a Linux PC with
a Condor QPCI 1553 interface card, two ARC-201D radios,
and two ARC-231 radios.

The process of abstraction constituted defining the radio
control requirements. To begin, TES analyzed the interface
control documents of five LRUs, abstracting the specific
radio functions into common function calls belonging to the
CDA-RC API (see Figure 6). (In addition to the ARC-201D
and ARC-231, several legacy radios were used to obtain a
more generalized abstraction.) This iterative process
resulted in defining the radio control Capabilities by
mapping data fields of MIL-STD-1553 messages to function
parameters and by review of functional relationships and
radio commonalities.

To illustrate mapping specific radio functions into a
common API, both an ARC-201D and an ARC-231 are
capable of changing the radio frequency on a single channel.
However, the MIL-STD-1553 message used by the ARC-
201D represents frequency with four fields (the tens, ones,
tenths, and hundredths digits of frequency expressed in
megahertz). The message used by the ARC-231 represents
frequency in a single field expressed in kilohertz as a 32-bit
integer. These fields were mapped to a single parameter of a
function called SetFrequency. The SetFrequency function
belonged to the Radio Capability. The Radio Capability

contained other general radio related functions such as
SetPower for changing the transmit output power.

Review
Check mappings
-Identify gaps & overlaps
-Clarify Capabilities

Mapping

Trace low-level fields
and parameters to higher
level common interfaces

Device MICDs

OS specifications

Protocol specifications

Prototype & Test

Application-level API

Operating Environment API

Review
Check mappings
-Identify gaps & overlaps
-Clarify Capabilities

Review
Check mappings
-Identify gaps & overlaps
-Clarify Capabilities

Mapping

Trace low-level fields
and parameters to higher
level common interfaces

Mapping

Trace low-level fields
and parameters to higher
level common interfaces

Device MICDs

OS specifications

Protocol specifications

Device MICDs

OS specifications

Protocol specifications

Prototype & Test

Application-level API

Operating Environment API

Application-level API

Operating Environment API

Figure 6. Iterative Abstration Process

Within the CDA-RC API, one radio is represented by many
Capabilities. Though all the radios are different, Table 1
shows their capabilities can be abstracted such that the
overlap is sufficient to justify a common interface, and
Figure 7 further illustrates how the process reduces
documentation used for integration from many to few.

Table 1. Abstracted Capabilities for Radio Control

Capability ARC-201D ARC-231
Channel

(handles presets) x x

Crypto x x
DAMA x
HaveQuick x
Message x x
Modem x x
Radio x x
SatCom x
SINCGARS x x
Test

(manages BITE) x x

Voice x x

ReviewMapping

Device MICDs

Prototype
& Test

ARC-220
ARC-231

ARC-201D
ARC-186

ARC-164
CDA-RC

API

Proprietary & Unique Open & Standard

ReviewMapping

Device MICDs

Prototype
& Test

ARC-220
ARC-231

ARC-201D
ARC-186

ARC-164
CDA-RC

API

ReviewMapping

Device MICDs

Prototype
& Test

ARC-220
ARC-231

ARC-201D
ARC-186

ARC-164

ARC-220
ARC-231

ARC-201D
ARC-186

ARC-164
CDA-RC

API

Proprietary & Unique Open & StandardProprietary & Unique Open & Standard

Figure 7. CDA Reduces Many MICDs to One

A similar abstraction process was followed to develop an
operating environment (OE) API. The operating environ-
ment API allowed CDA-RC implementations to use
operating system (OS) services such as threads, mutual
exclusion, file operations, and timers; yet it isolated the
implementations from the specifics of every operating
system on which CDA-RC ran.

The OE API also isolated CDA-RC from the specifics of
sending and receiving messages to a radio LRU via the
Bus1553 message set. In the development environment,
TES implemented the OE abstraction to send messages
directly to the MIL-STD-1553 bus.

In the demonstration environments, the integrators imple-
mented this portion of the OE abstraction to send messages
to an IO handler via internet protocol. Moreover, since TES
was unable to test in the target environments, the whole of
the OE abstraction implementation was to be open and the

source was delivered to the integrators in case any platform-
specific alterations were needed.

Integration and Demonstrations
Commonality Working Group The U.S. Army’s Product
Manager, Aviation Mission Equipment (PM-AME) and the
Aviation Applied Technology Directorate (AATD) co-
sponsored the Commonality Working Group common
software demonstrations. The efforts were an experiment of
how OEM platform integrators and third-party developers
can come together to integrate avionics equipment with
common software.

This effort examined the processes, documentation, and
implementation of integrating common reusable control
code of an ARC-201D radio onto Army Aviation platforms
using a subset of CDA-RC functions.

The integration environments of CDA-RC for the
Commonality Working Group involved two disparate
platform architectures. One OEM integrated and
demonstrated CDA-RC onto the MCAP II
(Manned/unmanned Common Architecture Program phase
2) architecture–the architecture to be used in the future AH-
64D Apache. Another OEM integrated and demonstrated
onto the CAAS (Common Aviation Architecture System)
architecture–the architecture is used in the MH-47 and MH-
60 helicopters (and scheduled for use in the CH-47 Chinook,
UH-60 Blackhawk, and the ARH-70 helicopters).

Tucson Embedded Systems (TES) worked with AME’s
OEMs to assist their integration efforts of the CDA-RC
software on the MCAP-II and CAAS platforms respectively.

The integration effort included:

• Initializing the ARC-201D for single channel tuning and
voice only,

• Providing interface to (integrating to an existing
MCAP-II and CAAS HMI or human-machine interface)
and demonstrating single channel tuning (volume,
power, squelch, frequency), and

• Providing documentation that describes the methods and
strategies used to mask and mitigate the OSA
differences (MCAP-II and CAAS) in order to facilitate
the use of the common software across platforms.

The specific scope of the integration effort included the
entire operating environment API, but only a subset of the
application-level API. The following lists the specific
functions that were integrated during the CWG Common
Software demonstration.

Application Level API (subset):

Voice::SetVolume Voice::GetVolume
Voice::SetSquelch Voice::GetSquelch
Radio::SetFrequency Radio::GetFrequency
Radio::SetPower Radio::GetPower

Operating Environment API:

Thread::SpawnThread Thread::WaitForThread
Thread::ProcessThread Thread::StopThread
Thread::KillThread Thread::IsActiveThread
Thread::SetDelay Thread::Delay
Thread::IsTerminatedThread
Thread::IsFinishedExecution
Thread::GetSpawnedThreadID
Thread::GetCurrentThread

File::Open File::Close
File::Write File::Read
File::ReadLine File::IsOpened
File::Flush

Timeout::Delay Timeout::DelayDifference
Timeout::End Timeout::GetInterval
Timeout::Slide Timeout::Start
Timeout::SystemTimeStamp

Mutex::Lock Mutex::TryLock
Mutex::UnLock

Bus1553::Init Bus1553::Receive
Bus1553::Send

Army Technology Integration Center The purpose of the
Army Technology Integration Center (ATIC) program was
to establish an open architecture, system of systems,
airframe-independent, system integration test facility. The
ATIC was to increase performance and commonality, and
reduce the cost of helicopter mission equipment packages by
facilitating rapid integration and evaluation. During its
development and construction, the ATIC Integrator looked
to CDA-RC to provide radio control for their phase I
demonstration of the ATIC's abilities.

For the Phase I demonstration, the ATIC Integrator
integrated CDA-RC into a VxWorks environment. While
demonstrating ATIC’s reconfigurable abilities, the
demonstration also presented the advantages of the CDA
device abstraction layer which enable the changing of
devices without changing the code of the applications that
use them.

The demonstration started by exercising all the functionality
of the ARC-201D radio through the CDA-RC Capabilities
with the ATIC HMI. Then using the same HMI without
changes, the Capabilities that were demonstrated on the
ARC-201D were also demonstrated on the ARC-231 along
with the ARC-231’s additional functionality.

Lessons Learned
The integration efforts of the CDA-RC for the Commonality
Working Group (CWG) proved insightful. Lessons learned
document [4,5] identified programmatic, technical, and
process related issues.

Seven lessons were identified: (1) Understand the target
platform(s), (2) Obtain a capable common software
repository, (3) Control the configuration, (4) Make the
documentation more useful for integration, (5) Address
programmatic licensing issues early, (6) Make allowances
for the newly-defined developer-integrator process, and (7)
Understand that open systems architectures are not entirely
open.

These lessons are described along with suggestions as
enumerated.

1) Understand the Target Platform(s) – Although there were
several technical exchange meetings between the common
software developer and the integrating OEMs, original
assumptions of target architectures were incorrect which
resulted in time and effort building and testing against
incorrect target platforms. A Government-owned Aviation
Systems Integration Facility (ASIF) should be developed to
support the common software development process. The
ASIF should be loaded with target architecture build suites
along with mobile build, development, and integration labs.
These build suites need to be available to all participants,
both Developers and OEMs, to assist with the development,
integration, and validation of future common software
efforts. Another white paper [6] describes such a
development environment.

2) Obtain a Capable Common Software Repository – The
Army Knowledge Online (AKO) system was used as the
central shared repository. This repository both worked and
had capability shortcomings. While the repository provided
an integration-neutral area to share files and information, as
a tool, the AKO was unfriendly, had poor access control
features, and was difficult to upload batches or sets of files
from multiple directories. Therefore, suggested was to use a
tool other than the Army Knowledge Online (AKO) system.
The topic and issue of Common Software Licenses is
described below in (5).

3) Control the Configuration – common software files
should be better managed and configurations synchronized.
An issue occurred when the Integrators linked to non-
synchronized software. This issue surfaced when the
Developer modified implementations of header files to assist
(we tried to simplify) integration efforts (i.e., TES moved
#defines for OE specifics) and these files were not re-
synchronized causing Integrator builds issues. Participants
should weigh and accept the trade-off of being in a real-time
prototype rapid-development environment versus a more-
formal production environment. In a more-formal

environment, configuration management (CM) issues are
better controlled, but at a cost of extra time and resources.
The CWG accepted the risk of working within the less-
formal proof-of-concept rapid-development environment in
order to expedite the prototype process and meet its short
demonstration schedule.

4) Make the documentation more useful for integration –
The original interface control document (ICD) provided to
the Integrators was not adequate as a Developer/Integrator’s
User Guide. Participants should establish and maintain an
“open dialog.” This was critical to address questions so that
integration efforts could continue to move forward. On-site
visits and open communications were essential for complex
integration efforts to succeed. The CWG actually did very
well here and forged relationships that will serve and assist
with AME’s future goals for the CSI.

5) Address programmatic licensing issues early – Proprietary
markers on software files and licensing issues hampered
initial file sharing among participants. A part of this study
was to determine the How, that is how to develop common
software from both programmatic and technical standpoints.
The FAA AC 20-148 Reusable Software Components [1]
identifies that these types of undertakings require
considerable up-front planning and suggest allotting time on
“Stakeholders Agreement” and defining the communication
channels and roles among stakeholders. We simply
underestimated the need to address business interests from
the corporate level.

6) Make allowances for newly defined developer-to-
integrator processes – The CWG agreed to conduct a proof
of concept and rapid prototype development demonstrating
that common software can be used on disparate platforms.
To accomplish the effort, engineer-to-engineer interfaces
and exchanges occurring in an experimental real-time update
fashion with both software and documentation was required.
As a result, CM issues resulted (described above). These
issues could have been avoided in a more formal
environment, but at an increase to both project schedule and
program cost. Participants should understand, discuss, and
accept trade-offs. Maintain open dialog with Participants
and status the Customer of both progress and issues.
Collectively, we performed well here. We had a project slip,
but all issues were well communicated to our Customers.

7) Understand that open systems architectures are not
entirely open – Access to target architecture software and
hardware was hampered (and remains hampered) due to
OEM proprietary issues. The MCAP-II platform is based on
a proprietary RTOS, a variant of the commercial version.
The CAAS platform requires proprietary hardware. Efforts
to develop and integrate common software require that the
Developer have the exact environments when developing for
and transferring to multiple target architectures. To address

proprietary OEM hardware and software issues, a
government-owned Aviation Systems Integration Facility
(ASIF) is suggested. ASIF would be loaded with target
architecture build suites. These build suites need to be
available to all participants, both Developers and Platform
Integrators, to assist with the development, integration, and
validation of future common software efforts. The ASIF
having the target architectures and the hardware and
software configurations can communicate these
configurations to all common software Developers.

Similar efforts – WDI
The Chinook Integrator is developing the Well-Defined
Interface (WDI) with similar design aspects of the CDA.
The WDI will first target the CH-47 Cargo platform, with
the potential to be integrated and reused across the other
CAAS platforms.

While the WDI has many noteworthy aspects it was not
designed for reuse across the entire suite of dissimilar
Aviation platforms. In anticipation, the Army’s Aviation
Mission Equipment may task an effort to investigate and
develop the adapters for the MCAP-II platform.

Recommendations and Next Steps
PM-AME/AATD Common Software Demonstration was a
two-part effort. First, it was shown that Common Reusable
Software could be integrated on disparate platforms.
Second, documentation was created describing the How To
and Lessons Learned [4,5] both from the Developer and
Integrator viewpoints. Therefore, AME (and/or other DoD
organization) can leverage the effort if they decide to move
forward with additional Common Software efforts.

With these lessons learned and the success of the common
software demonstration, next steps could include those to
improve and expand on the CDA concept and approach.
They could move the CDA-RC demonstration forward from
lab experiment to an airworthy Reusable Software
Component (RSC) for AME Communications.

Along these lines, the FAA’s AC 20-148[1] identifies
guidelines for RSC. The guidelines call for a Reuse Plan
that includes a Project Plan. The project plan must overtly
claim the intention of complying with AC 20-148 and Army
Aviation certification requirements. This requires the
compliance with the RTCA DO-178B [7]: planning,
documentation, standards, testing, tracing, configuration
management, auditing, etc. Naturally, the safety aspects of
the RSC use on require significant planning. Within the list
above, issues we observed with respect to Make the
Documentation Useful for Integration (4), Address the
Programmatic Issues Early (5), and The Developer-
Integrator Process needs to Mature (6) would be addressed.

The Reuse Plan would also identify the types of systems and
their intended scope of use – addressing the Understand the

Target Platform (1). The RSC project plan must identify the
systems it is to be used on and speak to the implications this
scope of use has on the RSC design. Specific direction must
be given to each system (various aviation platforms)
incorporating the RSC or, at a minimum, the issues that are

likely to occur and the various issues affecting each platform
identified. This latter part would address The Open Systems
Architectures are not entirely Open (7).

Processes and Visions for Reusable Software Components

The Army’s Assistant Secretary of the Army
(Acquisition, Logistics, and Technology) is spearheading
efforts [8] for “rapid equipping,” “rapid fielding,” and
transforming the Army’s acquisition processes. PM-
AME’s efforts with CSI, CDA-RC, and WDI are moving
toward those goals.

The common software demonstration could serve as the
cornerstone for AME’s transformation toward its
Common Software Initiative and goals for common
reusable aviation software across its Aviation Fleet.

As mentioned, the planned goal for CDA is 100% reuse,
such that one piece of software may be developed, tested,
and certified then reused across multiple disparate
platforms as described in the FAA circular AC 20-148 –
Reusable Software Components [1].

A vision was presented during the CWG Demonstration.
It was a vision of Reusable Software Components (RSC),
a process for how common reusable software could be

produced, tested, and integrated across the Aviation fleet
in a cost-effective manner.

The process, aligned with FAA’s AC 20-148[1], implies
third-party developers could produce airworthy reusable
software components (RSC) and reusable software
verification components (RVC) which meet DO-178B
guidelines, build and execute system-level tests at a
government-owned ASIF, then with a high level of
confidence rebuild the RSC and RVC on platform-
specific SILs and re-run the RVC saving both time and
money. On completion, the components then proceed to
flight-testing.

Through the process, an airworthy certification is
achieved and an acceptance letter of the RSC and its
reusable artifacts are presented back to the Developer, for
reuse at subsequent platform SILs, etc.

33rdrd Party Party
Developer Developer

develops the develops the
RSC and RVC at RSC and RVC at

the the DesktopDesktop

Developer

Release toRelease to
Flight TestingFlight Testing

ASIFASIF

ASIF plugs RSC into ASIF plugs RSC into
platformplatform--specific builds specific builds
and reand re--executes RVC executes RVC

for System Level for System Level
Testing in Testing in CAAS and CAAS and
MCAPMCAP--II SILs at the II SILs at the

ASIFASIF

Integrator plugs RSC into Integrator plugs RSC into
Platform Build and rePlatform Build and re--

executes RVC for Systemexecutes RVC for System--
Level TestingLevel Testing

in in Platform SILPlatform SIL

Chinook SILChinook SIL

DocumentationDocumentation

SoftwareSoftware

Software Software
TestsTests

11stst Certification Certification --
AED provides an AED provides an
acceptance letter acceptance letter

for RSC to the for RSC to the
DeveloperDeveloper

Reuse the RSC, RVC and Reuse the RSC, RVC and
artifactsartifacts

Black Hawk SILBlack Hawk SIL

22ndnd CertificationCertification

33rdrd Party Developer Party Developer
integrates RSC into the integrates RSC into the

ASIF Standard ASIF Standard
Reference Model Reference Model
(ASRM)(ASRM) and reand re--

executes RVC for executes RVC for
SystemSystem--LevelLevel

TestingTesting

Integrators

33rdrd CertificationCertification

Apache SILApache SIL

Reuse the RSC, RVC and Reuse the RSC, RVC and
artifactsartifacts

Process based on FAA AC-20-148 “Reusable Software Components”

33rdrd Party Party
Developer Developer

develops the develops the
RSC and RVC at RSC and RVC at

the the DesktopDesktop

Developer

Release toRelease to
Flight TestingFlight Testing

ASIFASIF

ASIF plugs RSC into ASIF plugs RSC into
platformplatform--specific builds specific builds
and reand re--executes RVC executes RVC

for System Level for System Level
Testing in Testing in CAAS and CAAS and
MCAPMCAP--II SILs at the II SILs at the

ASIFASIF

ASIFASIFASIFASIF

ASIF plugs RSC into ASIF plugs RSC into
platformplatform--specific builds specific builds
and reand re--executes RVC executes RVC

for System Level for System Level
Testing in Testing in CAAS and CAAS and
MCAPMCAP--II SILs at the II SILs at the

ASIFASIF

Integrator plugs RSC into Integrator plugs RSC into
Platform Build and rePlatform Build and re--

executes RVC for Systemexecutes RVC for System--
Level TestingLevel Testing

in in Platform SILPlatform SIL

Chinook SILChinook SILChinook SILChinook SIL

DocumentationDocumentation

SoftwareSoftware

Software Software
TestsTests

11stst Certification Certification --
AED provides an AED provides an
acceptance letter acceptance letter

for RSC to the for RSC to the
DeveloperDeveloper

11stst Certification Certification --
AED provides an AED provides an
acceptance letter acceptance letter

for RSC to the for RSC to the
DeveloperDeveloper

Reuse the RSC, RVC and Reuse the RSC, RVC and
artifactsartifacts

Black Hawk SILBlack Hawk SILBlack Hawk SILBlack Hawk SIL

22ndnd CertificationCertification

33rdrd Party Developer Party Developer
integrates RSC into the integrates RSC into the

ASIF Standard ASIF Standard
Reference Model Reference Model
(ASRM)(ASRM) and reand re--

executes RVC for executes RVC for
SystemSystem--LevelLevel

TestingTesting

33rdrd Party Developer Party Developer
integrates RSC into the integrates RSC into the

ASIF Standard ASIF Standard
Reference Model Reference Model
(ASRM)(ASRM) and reand re--

executes RVC for executes RVC for
SystemSystem--LevelLevel

TestingTesting

Integrators

33rdrd CertificationCertification

Apache SILApache SILApache SILApache SIL

Reuse the RSC, RVC and Reuse the RSC, RVC and
artifactsartifacts

Process based on FAA AC-20-148 “Reusable Software Components”

Figure 8. Vision for Reusable Software Components

Other necessary components for the vision for reusable
software components are: 1) an Aviation common
software repository, 2) common aviation interface
standards and common middleware aviation software
based on requirements that specifically call for reuse, and
3) acceptance to an airworthy certification process based
on the guidelines of the AC 20-148 and that which is
acceptable to airworthy DO-178B requirements. The
Aviation and Missile Research, Development and
Engineering Center's (AMRDEC) Software Engineering

Directorate (SED) verifies life-cycle artifacts and certifies
platform software. The PM-AME has been working with
SED on this reuse vision.

The long-term vision for AME should include an outline
of AME Best Business Practices [9, 10, 11] for not just
communications, but for all of the AME Functional Areas
(Communications, Mission Planning, Interoperability, and
Navigation) using the CSI and CDA concepts as they
evolve.

Conclusions

The Capability Driven Architecture (CDA) has been
demonstrated to AME as an airworthy design for creating
reusable software components. It is an open architecture for
integrating and deploying new and legacy capabilities and
avionics onto Army rotorcraft platforms. While
architectures exist that can claim software reuse, few, if any,
can claim software reuse for safety critical airworthy
applications.

The common software demonstrations, which took
Capability Driven Architecture for Radio Control (CDA-
RC) software for two tactical radios and integrated it on
three disparate Aviation platforms has been a success.
Combining these two demonstrations, once piece of software
operating two LRUs (ARC-201D and ARC-231) were
integrated on three disparate platforms, and verified using
one test suite.

The knowledge and experience gained from this
demonstration has advanced the methods of common
software development, and clarified a vision that will further
the implementation of the Army’s Common Software
Initiative.

For additional information about CDA, contact PM-AME or
Tucson Embedded Systems, Inc. at 520.575-7283x109, Mr.
Dennis Kenman, TES–Army Program Manager.

Figure 9 - CDA-RC on 3 Airworthy Platforms

References
[1] Advisory Circular AC 20-148 – Reusable Software
Components, US Department of Transportation, Federal
Aviation Administration, December 2004.

[2] Defense Acquisition Guidebook, Chapter 2–Defense
Acquisition Program Goals and Strategy, 20 December
2004.

[3] Army Acquisition Policy, AR 70-1, 16 January 2006.

[4] Commonality Working Group Common Software
Demonstration, Lessons Leaned, Tucson Embedded
Systems, Inc., 20 July 2006

[5] Supporting the Common Software Initiative, Capability
Driven Architecture – Radio Control, Reusable Software
Component, Integrator’s User Guide, Tucson Embedded
Systems, Inc., 7 August 2006.

[6] The ASIF Standard Reference Model (ASRM)–The
Development Environment that will Enable Common
Software Development for Army Aviation Aircraft, Tucson
Embedded Systems, Inc. 9 February 2007

[7] RTCA DO-178B, "Software Considerations in Airborne
Systems and Equipment Certification", RTCA, Inc., 1140
Connecticut Avenue, Northwest, Suite 1020, Washington,
D.C., 1 December 1992

[8] “Claude M. Bolton Jr. Assistant Secretary of the Army
(Acquisition, Logistics, and Technology) Talks to Defense
AT&L”, Defense AT&L, November-December 2004.

[9,10,11] Software Product Lines – Practices and Patterns,
CMMI, and CMMI-AM are all products of Carnegie Mellon
Software Engineering Institute, March 2004.

