
 978-1-7821-2734-7/20/$31.00 ©2020 IEEE
 1

Model-based Tools designed for the FACE™
Technical Standard, Editions 3.0 & 2.1

Stephen M. Simi
Tucson Embedded Systems (TES)

5620 N. Kolb Road, Suite 160
Tucson, AZ 85750

StephenS@TucsonEmbedded.com

Joe Uidenich
Raytheon Missile Systems

1151 E Hermans Rd. TU/M09/1
Tucson, AZ 85756

Joseph_M_Uidenich@raytheon.com

Sean P. Mulholland
Tucson Embedded Systems (TES)

5620 N. Kolb Road, Suite 160
Tucson, AZ 85750

Sean@TucsonEmbedded.com

Dr. James Head
Raytheon Missile Systems

1151 E Hermans Rd. TU/M09/1
Tucson, AZ 85756

James.N.Head@raytheon.com

Abstract — The promise of model-based systems engineering
(MBSE), as described by DO-178C’s supplement, DO-330 [1,
2] is with a sufficiently described system and software model,
one should be able to auto-generate system’s control software,
testing, and lifecycle documentation. If aligned to a Modular
Open Systems Approach (MOSA), like the Future Airborne
Capability Environment (FACE) Technical Standard [3], and
if aligned to Military Aircraft Airworthiness Qualification
efforts, the lifecycle artifacts can be used and reused across a
fleet of dissimilar aircraft systems, enhancing aircraft
capabilities across the battlespace [4].

The Open Group FACE Consortium [
https://www.opengroup.org/face] has long requested metrics
regarding time savings and level of effort (LOE) using the
Modular Open Systems Approach described by the FACE
Approach. This paper presents three (3) working use cases of
using the TES-SAVi AWESUM® MBSE tool suite converting
FACE Technical Standard data models.

AWESUM® now has the capability to convert software
developed to the FACE Technical Standard from Standard,
Editions 2.x to 3, up to the interface validation process.
Designed as a complete lifecycle tools suite, AWESUM® has
the ability to address the complete lifecycle objectives
described by DO-178C, support software aligned to the FACE
Technical Standard, and support Military Airworthiness
Qualification processes [5].

The use cases reported within this paper include the
conversion of the BALSA (Basic Avionics Lightweight Source
Archetype) User Supplied Model (USM) v2 with ~100 data
elements to USM v3; secondly, the v2 to v3 conversion of a US
Army Small Business Innovation Research (SBIR) topic
requesting common reusable FACE development efforts,
namely the Army Common Engine FADEC Interface (CEFI)
FACE component, which was intentionally designed to
leverage BALSA as its starting point for design; and thirdly a
sizable real-world application, the conversion of a Raytheon
Missile Systems’ (RMS) program with ~15,000 data elements.
This third product is a FACE Domain Specific Data Model
(DSDM) awarded FACE Conformance Certification in April
2019 to FACE Technical Standard, Edition 2.1. This DSDM is
based on the Unmanned Aircraft System (UAS) Control

Segment (UCS) Version 3.4 [6]. This paper records the
efficiencies of MBSE tools applied to FACE Technical
Standard development efforts, lessons learned, and metrics on
level of effort (LOE) saved. Should the products be ported and
reused across a fleet of dissimilar aircraft platforms, the reuse
efficiencies further increase.

TABLE OF CONTENTS
1. INTRODUCTION .. 1	
2. ECO-SYSTEM TOOLS FOR FACE TECHNICAL
STANDARD, EDITIONS 2.1 TO 3.0 DATA MODEL
TRANSLATIONS AND CODE GENERATIONS 2	
3. SUMMARY – FACE ECOSYSTEMS - MODEL-BASED
TOOLS APPLIED TO REAL-WORLD USE CASE
DEVELOPMENT EFFORTS .. 12	
ACKNOWLEDGEMENTS ... 12	
REFERENCES ... 13	
BIOGRAPHY ... 13	

1. INTRODUCTION
A typical and recurring programmatic question heard in the
DoD military aviation circle is why use model-based
systems engineering (MBSE) tools and processes? And what
are the benefits of MBSE? The answers are summarized in
the list below. Because MBSE:

• Speeds product development -- ties in contributory roles
for all Stakeholders into the life cycle management
command (LCMC) process

• Specifies data sufficient to auto-generate product artifacts;
i.e., software code, software tests, corresponding
lifecycle documentation, and bi-directional tracing of
high and low-level requirements to software tests and
test results, used for conformance; e.g., FACE

2

Certification, and DO-178C, and qualification
processes; e.g., Military AWR, AR-70-62 [5]

• Promotes cross-organizational developments of complex
systems-of-systems

• Improves sustainment throughout the life cycle,
development and post-deployment; i.e., it aligns with
OSA/MOSA approaches

• Opens vendor competition for best-of-breed with aviation
‘plug-n-play’ interfaces, and

• Is becoming DoD Directive Standard Practice in DoD
acquisition programs

The bottom-line is MBSE is the preferred choice when
planning to manage the complexity of next-generation
systems-of-systems developments, integration, testing,
qualification, and sustainment.

Defense Acquisition Systems defines a System as “a
combination of two or more interrelated pieces of
equipment (or sets) arranged in a functional package to
perform an operational function or to satisfy a requirement.
An open system uses modularity to provide 'plug-and-play'
capabilities.”

The TES-SAVi AWESUM® model-based tools suite, used
to report results within this paper, is designed to support the
complete lifecycle development and qualification of
complex cyber physical systems (CPS) [4], systems that are
aligned to:

• The FACE Technical Standard [3]

• Software reuse principles in accordance with AC 20-148
[7], and

• U.S. Army Military Airworthiness Qualification efforts
(AR 70-62 [5]).

Tomorrow’s military aircraft will be designed and operated
as systems of systems operating on MOSA architectures.
DoD Instruction, Information Technology Standards in the
DoD [8] references DoD Directive 5000.1[9], which
requires acquisition programs to employ a modular, open
systems approach. The Open Systems Policy states,

“Acquisition programs shall be managed through the
application of a systems engineering approach that
optimizes total systems performance and minimized total
ownership costs. A modular, open systems approach shall
be employed, where feasible.”

The FACE Technical Standard describes how to develop
and certify software for capability reuse within other FACE
architectures.

2. ECO-SYSTEM TOOLS FOR FACE TECHNICAL
STANDARD, EDITIONS 2.1 TO 3.0 DATA MODEL
TRANSLATIONS AND CODE GENERATIONS
The TES-SAVi AWESUM® model-based tool suite [
https://tes-savi.com/awesum-product-suite/] was used to
convert existing FACE data models, e.g., BALSA, or
develop and convert data models designed to the FACE
Technical Standard [3]. The AWESUM conversion
capabilities include the ability to:

• Export a Unit of Conformance (UoC) FACE data model
or Domain Specific Data Model (DSDM) to FACE
Standard, Editions 2.1 and/or 3.0 (soon 3.1) from one
model

• Convert FACE data models from FACE Standard,
Editions 2.1 to v3.0

• Upgrade the dependency of the UOC Supplied Model
(USM) FACE Shared Data Model (SDM) from FACE
Standard, Editions 2.1.x to 3.0.x

• Validate the Metamodel, the SDM, and Query &
Template Languages

• And using the model, generate the software for FACE
Technical Standard, Editions 2.1 and 3.0 using
ecosystem tools, TES-SAVi AWESUM®[10] and
RTI’s Connext [11]

The data model software conversion process and results
were demonstrated to the FACE Consortium during a FACE
Consortium’s Face-to-Face Member’s meeting and the
BITS event (BALSA Integration and Test Session) in St.
Petersburg. Florida in April 2019; and at the US Air Force-
sponsored FACE & SOSA Expo and Technical Interchange
Meeting, in Dayton OH in September 2019. The results are
described in the following three use cases:

1. BALSA, conversion of versions corresponding to
FACE Technical Standard, Edition 2.1.3 to v3.0,

2. US Army SBIR Data Model to Common
Controller, conversion from FACE Technical
Standard, Editions 2.1.3 to 3.0. US Army Small
Business Innovation Research (SBIR) topic A18-
050 requested common reusable FACE
development efforts, namely the Army Common
Engine FADEC Interface (CEFI) FACE
component, which was intentionally designed to
include BALSA, and

3. Conversion of FACE Conformant Product, namely
Raytheon CODE Domain Specific Data Model,
from FACE Technical Standard, Editions 2.1.3 to
3.0. This product was certified FACE Conformant
on 17 April 2019, Certificate #15555205.

3

USE CASE 1 – BALSA (100 ELEMENTS)

The US Army funded a FACE reference architecture and
FACE software as an example for software developers to
learn from and support more complex FACE development
efforts. The suite of software is described in the Open
Group Guide – FACE™ Software Supplier Getting Started
Guide, Version 1.0 [12].

1This Software Supplier Getting Started Guide (GSG) is
written for Software Suppliers who are implementing the
FACE Technical Standard. It is designed to be a
navigational quick start guide providing access to sample
conformant FACE software, developed FACE data
models, and corresponding verification artifacts.

The GSG includes a reference to a descriptive working
example of BALSA. BALSA is the application being
used as the “on-ramp” software example for the Getting
Started Guide. BALSA serves as a working example for
developers on how to implement the FACE Reference
Architecture. The BALSA application is a collection of
Units of Conformance (UoCs), which transform position
information and aircraft identification to produce the
Automatic Dependent Surveillance-Broadcast (ADS-B)
messages required for all aircraft.

BALSA is a working software example of applications
aligned to the FACE Technical Standard executing in a
FACE Reference Architecture (Figure1). It is a simplified
version of an avionics suite comprised of basic avionics
processes. BALSA consists of five separate FACE
Portable Component Segment (PCS) and Platform
Specific Services Segment (PSSS) Units of Portability
(UoPs), which interact with the Transport Services
Segment (TSS), Input/Output Services Segment (IOSS),
and the Operating Systems Segment (OSS). These UoPs
co-operate to combine position and altitude information
with an aircraft ID and send it out “to the world” as ADS-
B messages. The communication paths that connect the
components in this example are all internal TSS
connections, and an IOSS connection is used to write the
ADS-B message to the “real world”. [Note the TSS,
IOSS, and OSS is denoted as TS, IO and OS in Figure 1].

The User Supplied Data Model (USM) for BALSA models
the messages for ADS-B.

A FACE data model is the mechanism to describe all data
into or out of a PCS or PSSS component in three key
techniques: conceptual semantics, logical frames of
reference, and message structure over the Transport
Services layer. The distinction of each is fundamental to
capturing the context of objects within the UoP domain and
enabling interoperability of UoPs within the scope of a
FACE solution.

1 Text extracted from FACE™ Software Supplier Getting Started Guide,
Version 1.0, © 2017 The Open Group. FACE™ is a trademark of The
Open Group in the United States and other countries.

The FACE data model exists in an XMI format, with a
“.face” extension. The XMI format is specified using the
language notation prescribed by the FACE Metamodel. A
Software Supplier must develop and document the message
structure exchanged by a UoP. The model is intended to be
a documented resource to aid integration efforts; also,
through the use of tool sets, the data model can be used to
generate the Transport Services interface and data type
source code.

The BALSA Software, and corresponding FACE UoP
Supplied Model (USM) for BALSA were used to test the
software conversion from Editions 2.1.3 to 3.0 using the
AWESUM® MBSE tools suite.

FACE Boundary

Platform Specific Services Segment

Operating
System

Segment

I/O Services Segment

OS	

Health
Monitoring

Platform Device Services

EGI Controller

Aircraft Config.

Portable Components Segment

EGI Manager ATC Manager

TS	

TS	OS	

OS	

IO	

OS	

FACE 2.1 BALSA	

Device Driver Ethernet Device Driver

Interface	Hardware	
(e.g.,	MIL-STD-1553,	Ethernet)	

UDP Writer IO Service EGI

BALSA	

ADS-B In

Operating
System

ADSB Out

UDP Reader

Transport
Services
Segment

TS UoC

Configuration
Capability

Distribution
Capability

Transport
Capability

Marshalling
Capability

KEY
FACE Defined Interface
External Interface
Non-Conformant Interface

Figure 1 - BALSA Architecture Diagram

The data model standard conversion was performed live
during a 25-minute demonstration at the FACE
Consortium’s member’s meeting, BITS event, in front of 75
members out of 85 member organizations in St Petersburg,
Florida at the FACE Face-to-Face member’s meeting; and
the demonstration was repeated during the US Air Force-
sponsored FACE & SOSA Expo and Technical Interchange
Meeting, in Dayton Ohio in September 2019. The
conversion process took seconds. The resulting data model
was shown to the Consortium (Figure 2)

4

BALSA MBSE LEVEL OF EFFORT USING
AWESUM® MBSE TOOL SUITE

The level of efforts savings estimated for conversion using
AWESUM® is:

• Converted BALSA UoPs, Views & DM from FACE
Technical Standard, Editions 2.1 to 3.0

• 4 UoPs, 3 Views, < 100 DM Elements

• 8 – 40 hours saved

The BALSA software baseline was re-used as a starting
point for the second use case development efforts. More
specifically, Tucson Embedded Systems, Inc. (TES) was
able to reuse most of previous BITS demonstrations effort
[13]. We removed the FACE Conformant Honeywell EGI
software, and added in new FACE data model and new
FACE UoC software components specifically designed for
US Army SBIR efforts. We ran the software on a Linux-
based Raspberry PI.

USE CASE 2 – SBIR FADEC (with a demonstration of
operations)

The second use case involves a SBIR topic A18-080,
Common Engine Controller, delivered March 2019. The
SBIR is based on modular open systems design and
alignment to the FACE Technical Standard. Although the
SBIR objective requested FACE Technical Standard Edition
3.0, the 3.0 eco-system wasn’t available during the SBIR’s
6-month period of performance (PoP). The SBIR’s objective

was to design an open architecture, construct a data model
of the architecture messages, and achieve alignment to the
FACE Technical Standard. TES sub-contracted to
Management Sciences, Inc (MSI) in the last five (5) weeks
of the Phase I PoP. Using AWESUM®, TES resources
designed, developed, and used the FACE Conformance Test
Suite (CTS) (FACE CTS) to verify the SBIR FADEC data
model and software. TES then presented the software
developed to the FACE Technical Standard to the Army
Improved Turbine Engines Program Office on schedule.

Subsequent to the Army’s SBIR presentation, TES then
used AWESUM® to convert the data model from FACE
Technical Standard, Edition 2.1 to 3.0 and auto-generated
the FACE Transport Services Segment software [11]. The
conversion and demonstration was performed and presented
live during the FACE members meeting at the BITS event
in April 2019 in St Petersburg, FL., and the demonstration
was repeated during the US Air Force-sponsored FACE &
SOSA Expo and Technical Interchange Meeting, in Dayton
OH in September 2019.

The design and FACE development efforts involved:

• Designing the Architecture (Figure 3a) with
multiple FACE units of conformance (UoC)
software models (UoCs).

• Modeling the messages using AWESUM® (Figure
3b)

• Using FACE CTS to verify the model is aligned to
the FACE Technical Standard (Figure 4).

Figure 2 – BALSA 100 element model converted form edition 2.1.3 to 3.0 using TES-SAVi AWESUM®

5

The data model was designed as a jet engine domain
specific data model (DSDM) with six (6) messages to
interface with a common FADEC (Figure 3b). The six
messages were altitude, air speed, air temperature, turbine
speed, turbine temperature, and torque. TES developed the
conceptual, logical, and measurement models. Once the
model passed FACE CTS (Figure 4), we also used
AWESUM® and auto-generated the transport services
segment (TSS) software from the data model [11].

X-Plane flight X-simulation [https://flight-
simmer.com/xplane] was integrated to drive aircraft
position, altitude, air speed, and air temperature. The system
was remotely demonstrated first as a formal development
demonstration to the US Army SBIR program, then second
as a capability demonstration to the FACE member’s
meeting BITS event. In both cases remote demonstrations
were performed using WebEx teleconference software tied
back to Tucson Embedded Systems, Inc. laboratory facilities
[10]. Using AWESUM®, TES resources developed the
four FACE data models, and verified the software using the

KEY
FACE Defined Interface
External Interface
Non-Conformant Interface

FACE Boundary

I/O Services Segment

Platform Specific Services Segment

Operating
System

Segment

Platform Device Services

OS

Operating
System

CADC Sim

Portable Components Segment
TS

TS

Transport
Services
Segment

OS

OS

IO

RS232
Service

RS232
Driver

Interface Hardware
(e.g., RS232, Ethernet)

OS

Ethernet
Service

Ethernet
Driver

Engine Sim. Data

A18-080 Common Avionics Engine Interface - FACE Diagram

CADC Sim. Data

TS UoC

Configuration
Capability

Distribution
Capability

Transport
Capability

EPIC Sim

Simulation Display

FADEC Sim.

ARINC 429
Turbine Speed
Torque
Turbine Temp

3.1.4 Eng. to AC
FACE Msg(s)

Turbine Speed
Torque
Turbine Temp

FACE PCS-like
Engine tab on MFD

3.1.3 AC to Eng.
FACE Msg(s)

Airspeed
Altitude
Air Temp

X-Plane Aircraft (AC) Sim.

FACE PSSS
CADC (Sim.)

FACE IOS

FACE TSS

FADEC (Sim.)

FACE PSSS
EPIC

FACE TSS

FACE IOS

Figure 3 - (a) FACE Architecture Diagram for Army SBIR, and (b) model of messages and FACE UoC software block
diagram

Figure 4 - FACE Conformance Test Suite results on SBIR FADEC Jet Engine FACE Data Model

6

FACE CTS. The models and CTS results are illustrated
(Figure 4).

SBIR MBSE LEVEL OF EFFORT USING AWESUM®
MBSE TOOL SUITE

TES was able to perform the complete design (that is
aligning data models and software to the FACE Technical
Standard Edition 2.1.3) through demonstration in five weeks
(two experienced systems engineers for a total of 7 person-
weeks) using TES-SAVi AWESUM® model based tool
suite and the TES Capability Driven Architecture (TES
CDA) process [14] embedded within the AWESUM® tools
suite.

Subsequent to the SBIR Phase I final report and Army
demonstration, the AWESUM® model based tool suite
introduced the conversion capability for FACE Technical
Standard, Editions 2.1.3 to 3.0. During the FACE
Consortium’s Member’s Meeting in St Petersburg, Florida
during the scheduled BITS event (BALSA Integration and
Test Session), TES performed the (this second) conversion
of the SBIR data model live to the Consortium within
seconds. The same demonstration was repeated during the
US Air Force-sponsored FACE & SOSA Expo and
Technical Interchange Meeting, in Dayton OH in September
2019.

It is estimated the tool suite saved approximately 15 person-
weeks required to develop a FACE Technical Standard
Edition 3.0 data model from scratch. It should be qualified
that the TES resources are well versed with the FACE
Technical Standard (all Editions), FACE data modeling, and
FACE software development requirements, Figure 5b.

USE CASE 3 – RMS CODE (FACE STANDARD Edition
2.1.3, being translated to 3.0 – and Lessons Learned
Developing to the FACE Technical Standard in a
Collaborative Environment

The third use case originated from the Defense Advance
Research Project Agency (DARPA) Collaborative
Operations in Denied Environment (CODE) program, with a
purpose to align the program’s products to a Modular Open
Systems Approach (MOSA) referred to as “Conformance to
Standard”. Raytheon Missile Systems (RMS) was provided
the UCS data model as a starting point to this DARPA
effort. RMS and TES began with conversion of the model,
the Domain Specific Data Model (DSDM) based on the
Unmanned System (UxS) Control Segment Version 3.4
(UCS 3.4) [6].

The purpose of the RMS MOSA “Conformance to
Standard” demonstration was to take an RMS software
product and put it through the process of adhering to an
open systems standard. RMS selected the FACE Technical
Standard as the open standard for conformance. The
DARPA CODE program was already working towards
creating an open architecture aligned to the FACE Technical
Standard, making it a natural choice for taking a software
component through the FACE Conformance Program. RMS
performed model-based open systems design efforts on
CODE modules.

The UCS model came with its own set of unique challenges,
specifically, the UCS model preceded the FACE Technical
Standard and hence is not necessarily aligned to FACE, and
the CODE Domain Specific Data Model (DSDM) size
exceeds 15,000 elements, which is extremely large when
compared to other FACE Conformant data models.

Using this baseline and with the aid of the TES-SAVi
AWESUM® tool suite, an integrated team of Raytheon and
TES resources developed and obtained a FACE
Conformance Certificate for the CODE Auto-Router
Service Unit of Portability (UoP), September 2018, and a
FACE Conformance Certificate for a DSDM, April 2019.

	 	
	

Figure 5 – (a) 4(5) of 19 FACE Conformant Products, and (b) other FACE/MOSA Past Performances

7

The sheer size and complexity highlights the benefits of
using MBSE tools to manage complexity and save
development efforts.

The lessons from these efforts are categorized into
experiences using FACE Technical Standard, issues with
USC data model, and issues and experiences with the FACE
Verification and Conformance processes.

Collaborative Operations in a Denied Environment
(CODE)

CODE is a series of 50+ software modules being developed
as a DARPA program. DARPA requested that the
contractors (Raytheon and Lockheed Martin) define and
propose a particular open systems approach for the program
and to support UCS as the communication protocol to the
supervisory node. Raytheon chose to use the FACE
Technical Standard and to start with an incorporation of the
Unmanned Systems (UxS) Control Segment (UCS) model
with the intent to reuse existing services and to create an
autonomy domain for UCS [6]. DARPA and Raytheon
CODE program both thought initially that a newly defined
autonomy domain could be officially added to the UCS
Standard. As will be described, unforeseen difficulties in
aligning UCS to FACE may diminish the importance of
UCS to all concerned.

The CODE Auto-Router Service Unit of Portability (UoP)
was selected by the CODE team as a standalone service
with a small number of interfaces that would serve as a
simple example for demonstration purposes. The CODE
Auto-Router Service supports generation of air vehicle
routes around a supplied set of obstacles and evaluates
routes for validity.

The CODE Auto-Router Service UoP was developed to be a
FACE Portable Components Segment (PCS), which
leverages its own set of FACE Technical Standards. PCS
UoPs will only interface to other system components
through the Transport Services (TS) interface to exchange
data. The CODE Auto-Router Service UoP provides the
following public interfaces:

• [Inbound Message] Generate Route Plan
• [Outbound Message] Route Plan Response
• [Inbound Message] Evaluate Route Plan
• [Outbound Message] Route Evaluation Response

The CODE Auto-Router Service UoP also requires the
capability to request obstacle and planning region data from
a Common Operating Picture (COP) Manager in order to
plan and evaluate routes:

• [Outbound Message] Request COP Data
• [Inbound Message] COP Data Response

Internal to the CODE Auto-Router Service, Digital Terrain
Elevation Data (DTED) is used to perform collision
avoidance with terrain, directly reading from DTED files to

obtain terrain data. This interface must also be conformant
to the FACE Technical Standard, only using approved
Operating System (OS) interfaces to read these data files.

Tucson Embedded Systems (TES)

TES was subcontracted to RMS as part of a MOSA Internal
Research and Development (IRAD) demonstration to
support RMS through the FACE Conformance Program.
TES provided invaluable FACE expertise and guidance,
supporting development of FACE conformant data models,
conformance documentation artifacts, and performing
conformance verification testing. The TES subsidiary, TES-
SAVi, as a FACE approved Verification Authorities was
subcontracted to perform FACE Verification Services to
obtain certification.

TES performed a gap analysis for their products against the
FACE Conformance Program on the CODE Auto-Router
Service software. TES reported on gaps for coding, tests,
and documentation artifacts to reach conformance. Next
RMS contracted TES to support development efforts
through the large learning curve associated with the product
development efforts. Collaboratively, RMS and TES
resources developed products prepared for FACE
Conformance Program. Experiences gained can be reused
on follow-on efforts when applied to Raytheon’s product
line of complex composable systems software modules.

Issues with UCS and Data Model Requirements of the
FACE Technical Standard

The CODE Conceptual, Logical and Platform Data Models
(CDM, LDM, and PDM respectively) are based upon the
UCS Specification, v3.4. Seeded with the UCS data model –
which is a message model – it was observed that UCS is not
aligned well to data model guidance described by the FACE
Technical Standard. The whole UCS specification model
was converted into a FACE CDM, utilizing the FACE CDM
Shared Data Model (SDM) observables. The CDM was then
transformed into an LDM, again utilizing the FACE LDM
SDM logical measurements, axes, respective measurement
systems, and value type units. Finally, the LDM was
transformed into a PDM with CODE defining the necessary
PDM IDL structures and primitives for the associated LDM
measurements and axes.

Conversion of the entire UCS Specification to align with the
FACE Technical Standard was arduous and time
consuming. The entire UCS specification was comprised of
thousands of entity types and inheritance/generalization was
used extensively. Fortunately, it was possible to create
scripts to replace UCS observables with FACE CDM SDM
observables, and remove inheritance/generalization by
composing inherited attributes on the derived entities. This
initial conversion effort required a month to accomplish
with many iterations as errors were discovered and
corrected.

8

For comparison, the US Army’s Reusable Radio Control
Component (R2C2) has completed the FACE Verification
process, with assistance from the U.S Army AMRDEC
FACE Verification Authority (VA), a FACE Consortium
approved VA on 7/25/2016. A FACE Verification
Statement is available upon request. This R2C2 data model
has 800 entities and took ~6 man-months or ~1,080 hours
LOE to develop with resources having significant FACE
data model experience.

RMS observed that the UCS Specification and resulting
CODE data model are so large, greater than 15,000 model
entities, that other existing modeling tools did not
accommodate this model well. Specifically RMS observed:

• The Vanderbilt ISIS: Sparx Enterprise Architect (EA)
Tools for FACE™ Data Modeling tool required
greater than four hours to export the entire CODE
Data Model (CDM, LDM, PDM and UoP Model)

• EA has issues performing large-scale operations with
larger data models -- DAO database errors occur.
Several CODE scripts had to be refactored to sidestep
issues with EA handling of the large CODE model.

• The TES-SAVi AWESUM® product suite was built
from the ground-up to support data modeling aligned
to the FACE Technical Standard and proved very
helpful, especially for providing design and
development guidance by enforcing the necessary
modeling rules.

In converting the UCS Specification data model to be a
FACE CDM, the UCS observable types were inadvertently
converted into FACE entity types, none of which were
unique from a CDM perspective. Each entity type contained
a single “UniqueID elementID” attribute, meaning none of
these CDM types were unique when compared to each
other. Also, UCS contains several other observable extended
types for Observable Specs, Requirements, Capabilities, and
Errors among others, which, while converted correctly to a
FACE entity type on the surface, did not meet the CDM
uniqueness requirement.

Additionally, the CODE development team had created
many “placeholder” entity types that had never been
updated to be unique CDM entity types. These custom
CODE UCS types did not meet the uniqueness requirement
and were deleted as a result. TES attempted to remedy the
CDM conflicts regarding uniqueness by writing scripts to
auto-generate uniqueness of entity types by randomly
adding unique observables until a unique composition of
characteristics was achieved. This sometimes required
multiple passes, populating several “junk” unique attributes
per entity type.

Near the very end of the CODE Auto-Router UoP
conformance effort, in order to reduce the amount of CODE

data model messages, the RMS CODE team produced a
greatly simplified data model. This reduced the number of
entities from 3,000+ to just the required ~20 for the CODE
Auto-Router Service. This eased TES’s burden of correcting
errors in the exported CODE data model and ultimately
allowed us to complete the FACE Conformance Program
successfully prior to the set deadline. This experience aided
the team when addressing the 15,000 element DSDM.

Resolution of Non-Unique CDM Entity Types for Full
CODE DSDM

The CODE CDM contained 138 categories on non-unique
entity types, which had to be resolved in order to pass the
FACE CTS. Given that CODE was starting from the
existing UCS CDM, it was generally not possible to
redesign these non-unique entity types to a single, more
comprehensive or appropriate entity type whose
characteristics could be projected to view types
corresponding to each of the non-unique entity types. This
would be the most appropriate course of action to define a
robust FACE data model, but the CODE DSDM was
coupled to the UCS data model which was intended to be
kept unmodified as much as possible. Due to the utilization
of the UCS data model as the starting point, other means for
achieving CDM entity types uniqueness had to be
developed.

For those uniqueness categories with eight or more
characteristics, similarities in content and purpose between
those non-unique entity types mostly allowed the entity
types to be reduced to a single generic entity type that could
be reused in place of the other types. An example of this
would be a configuration state of a subsystem, where the
configuration state entity could be used to both command
and receive status for a given subsystem. In this case, two
separate CDM entity types are not necessary with both able
to be reduced to a single type. The single entity type can
then either be realized by separate LDM entities (command
and status types), or the single entity type can be realized as-
is to the PDM level and then projected as two different view
types or message ports on the UoP model.

Figure 6a shows a contrived example of two non-unique
CDM entity types, Subsystem Configuration Command and
Subsystem Configuration Status. Due to the related nature
of these entity types and because their characteristic
signatures are the same, the two entity types can be
condensed into a single CDM entity type, Subsystem
Configuration (as shown in Figure 6b). Once condensed into
a single unique CDM entity type, it can be realized into a
single unique LDM and PDM entity type (Figure 7a) or it
can be realized into two separate LDM types, in turn each
realized by a separate PDM type (Figure 7b).

9

For the UoC that may use these PDM entity types as view
types for its associated message ports, the two view types
(one for the “Command” and another for the “Status”
message) can either both project the same common PDM
entity type or each project the specific “Command” or
“Status” PDM entity. These two view type options are
shown in Figure 8.

The one-to-one realizations with single common CDM-
LDM-PDM entity types (shown on left side Figures 7a and
8a) is the preferred method of reducing CDM entities to
achieve uniqueness because of the reduced duplication of
nearly identical entity types in the LDM and PDM. The one-

to-many realization method is only preferable when there is
an existing data model, UoP model and source code base
that may be too extensive to change so significantly.
Realizing the existing LDM and PDM entity types to a
common CDM type avoids large changes to the model and
source code while still achieving FACE conformance.

Figure 6 – (a) Non-Unique CDM Entity Types for Subsystems Configuration Command and Status, and (b)
Condensed to Single Entity Type

class CDM Entity Type Realization

«EntityType»
LogicalDataModel::SubsystemConfigurationLDM

+ elementID: UniqueID_Unbounded_Integer
+ subsystemID: UniqueID_Unbounded_Integer
+ location: VehicleFrontMidlineXYZPositionMeasurement
+ subsystemMode1: SystemModesMeasurement
+ subsystemMode2: PointingModeMeasurement
+ subsystemMode3: PictureModeMeasurement

«EntityType»
SubsystemConfiguration

+ elementID: UniqueIdentifier
+ subsystemID: UniqueIdentifier
+ location: Position
+ subsystemMode1: Mode
+ subsystemMode2: Mode
+ subsystemMode3: Mode

«EntityType»
PlatformDataModel::SubsystemConfigurationICD

+ elementID: UniqueID_Unbounded_IntegerPrimitive
+ subsystemID: UniqueID_Unbounded_IntegerPrimitive
+ location: VehicleFrontMidlineXYZPositionStruct
+ subsystemMode1: SystemModesPrimitive
+ subsystemMode2: PointingModePrimitive
+ subsystemMode3: PictureModePrimitive

«Realize»

«Realize»

class Realization - Alternativ e Method

«EntityType»
SubsystemConfiguration

+ elementID: UniqueIdentifier
+ subsystemID: UniqueIdentifier
+ location: Position
+ subsystemMode1: Mode
+ subsystemMode2: Mode
+ subsystemMode3: Mode

«EntityType»
LogicalDataModel::

SubsystemConfigurationCommandLDM

+ elementID: UniqueID_Unbounded_Integer
+ subsystemID: UniqueID_Unbounded_Integer
+ location: VehicleFrontMidlineXYZPositionMeasurement
+ subsystemMode1: SystemModesMeasurement
+ subsystemMode2: PointingModeMeasurement
+ subsystemMode3: PictureModeMeasurement

«EntityType»
LogicalDataModel::SubsystemConfigurationStatusLDM

+ elementID: UniqueID_Unbounded_Integer
+ subsystemID: UniqueID_Unbounded_Integer
+ location: VehicleFrontMidlineXYZPositionMeasurement
+ subsystemMode1: SystemModesMeasurement
+ subsystemMode2: PointingModeMeasurement
+ subsystemMode3: PictureModeMeasurement

«EntityType»
PlatformDataModel::

SubsystemConfigurationCommandICD

+ elementID: UniqueID_Unbounded_IntegerPrimitive
+ subsystemID: UniqueID_Unbounded_IntegerPrimitive
+ location: VehicleFrontMidlineXYZPositionStruct
+ subsystemMode1: SystemModesPrimitive
+ subsystemMode2: PointingModePrimitive
+ subsystemMode3: PictureModePrimitive

«EntityType»
PlatformDataModel::SubsystemConfigurationStatusICD

+ elementID: UniqueID_Unbounded_IntegerPrimitive
+ subsystemID: UniqueID_Unbounded_IntegerPrimitive
+ location: VehicleFrontMidlineXYZPositionStruct
+ subsystemMode1: SystemModesPrimitive
+ subsystemMode2: PointingModePrimitive
+ subsystemMode3: PictureModePrimitive

«Realize» «Realize»

«Realize»«Realize»

Figure 7 – (a) Single LDM and PDM Realization Method: and (b) One-to-Many Realization of CDM to Separate
LDM and PDM Entity Types

class Conceptual Data Model

«EntityType»
SubsystemConfigurationCommand

+ elementID: UniqueIdentifier
+ subsystemID: UniqueIdentifier
+ location: Position
+ subsystemMode1: Mode
+ subsystemMode2: Mode
+ subsystemMode3: Mode

«EntityType»
SubsystemConfigurationStatus

+ elementID: UniqueIdentifier
+ subsystemID: UniqueIdentifier
+ location: Position
+ subsystemMode1: Mode
+ subsystemMode2: Mode
+ subsystemMode3: Mode

class Conceptual Data Model

«EntityType»
SubsystemConfiguration

+ elementID: UniqueIdentifier
+ subsystemID: UniqueIdentifier
+ location: Position
+ subsystemMode1: Mode
+ subsystemMode2: Mode
+ subsystemMode3: Mode

10

Observations

The LDM SDM Measurements, Measurement Axes,
Measurement Systems, and Measurement System Axes
provided with the FACE shared data model contain a
significant set of reference logical entities, but there are
some oversights. Error and uncertainty types seem to be
missing in general, particularly covariance measurements.
Field of View (FoV) angle-based measurements are missing
as well as simple course/heading direction measurements.
The software developer end user cannot create measurement
Systems and System Axes; the FACE Consortium must
approve any proposed additions.

Suggestions for implementing missing measurements and
measurement systems include:

• Bringing new measurement system requirements to
the FACE Consortium Change Control Board (CCB)
for review and adjudication. This PR/CR process
may take months for incorporation into the FACE
Technical Standard [3]. The recommended new
measurement systems include: Error/uncertainty
types, particularly covariance for position, velocity,
orientation, position-velocity.

• Field of View (FOV) angles, horizontal and vertical
axes.

• Vehicle course/heading measurements.

• Reusing existing measurement systems for creating
new measurements by looking for systems that are
“close enough” in number and type of measurement
system axes. This is a work around rather than a

recommended approach, but it will permit the
developer to achieve a conformant data model.

The UCS FACE Incompatibilities and adaptation
recommendation are described in the table below.

class UoP Model - Alternate Method

«UnitOfPortabil ity»
SubsystemServ ice

«MessagePort»
SubsystemConfigurationCommandMessagePort

«MessagePort»
SubsystemConfigurationStatusMessagePort

«ViewType»
SubsystemConfigurationCommandView

«ViewType»
SubsystemConfigurationStatusView

«EntityType»
SubsystemConfigurationStatusICD

+ elementID: UniqueID_Unbounded_IntegerPrimitive
+ subsystemID: UniqueID_Unbounded_IntegerPrimitive
+ location: VehicleFrontMidlineXYZPositionStruct
+ subsystemMode1: SystemModesPrimitive
+ subsystemMode2: PointingModePrimitive
+ subsystemMode3: PictureModePrimitive

«EntityType»
SubsystemConfigurationCommandICD

+ elementID: UniqueID_Unbounded_IntegerPrimitive
+ subsystemID: UniqueID_Unbounded_IntegerPrimitive
+ location: VehicleFrontMidlineXYZPositionStruct
+ subsystemMode1: SystemModesPrimitive
+ subsystemMode2: PointingModePrimitive
+ subsystemMode3: PictureModePrimitive

«UoPMessagePort»

«MessageType»«MessageType»

+base

«Projection»

«UoPMessagePort»

+base

«Projection»

Figure 8 – (a) Common PDM Entity Type Projected by both View Types: and (b) Each View Type Projects own PDM
Entity Type

11

Summary RMS’ Lesson Learned

There was a steep learning curve to understand FACE data
model design and development. We found it extremely
useful to have a FACE data model expert on hand for
guidance. The FACE Approach has great depth in
requirements regarding the FACE Data Model and UoP
Model that require attention to fine detail, which could be
easily missed when modeling in other FACE Eco-system
tools. The FACE Reference Implementation Guide was
helpful to a limited extent, providing examples for simple
implementations but lacking more complex concepts.
Without the guidance of FACE data model experts it would
have been difficult to determine the necessary FACE data
model implementation nuances required.

Inheritance/Generalizations are not supported in FACE
Technical Standard, Edition 2.1. The FACE Domain
Interoperability Working Group (DIOG) Guidance
Subcommittee issued a White Paper in 2016 that
recommended that the FACE v2.1 Generalization
mechanism not be used, or used minimally for four primary
reasons:

• Generalizations in Edition 2.1 are ambiguous and can
cause issues during Characteristic Projection and code
generation

• Generalizations in Edition 2.1 did not support Inheritance
and caused additional modeling at the CDM, LDM and
PDM

• FACE data models are based on Set Theory and therefore
Generalizations are not necessary for FACE modeling,
and

• FACE Technical Standard Edition 3.0 utilizes
Specialization instead of Generalization.

The DIOG recommends the user compose Generalized
Characteristics into Sibling Entities, as it is fully compatible
with Editions 2.1, 3.0, and supports the basic tenets of Set
Theory. For the CODE data model, Generalized
Characteristics were composed into Sibling Entities per the
FACE DIOG recommendation.

TES reported issues with our CODE data model
realizations, particularly directionality, were not readily
apparent in other FACE modeling tool suites, nor were these
errors caught by XMI Export tool. These errors were not

UCS-FACE Incompatibility FACE 2.1 Adaptation, Recommendation
Significant usage of inheritance /
generalizations within UCS, contrary to
recommended FACE guidance.

Composed generalized characteristics into sibling
entities, thereby removing generalizations and
inheritance.
Simplified non-unique entity types to common/generic
type whenever possible.

For overtly simple entities (e.g. containing only 1-2
unique identifiers), that were either composed or
inherited/generalized, directly compose non-unique
entity’s characteristics on the encompassing entity type.

For error covariance measurements, developed generic
covariance CDM entity type, realizing it as the various
specialized LDM entity types (e.g. position covariance,
velocity, orientation).
For remainder of missing FACE measurements, “close
enough” measurements (i.e. same number of
measurement axes, similar value type units) chosen as
work-around.
Recommendation is to request addition of new
measurements via the FACE Consortium Change
Control Board (CCB).

Circular dependencies, references and links
within UCS data model.

Replace circular dependencies with unique identifiers
linking to the referenced instance.

Abundant non-unique conceptual entity
types in UCS data model.

UCS logical measurement systems not
available in FACE.

Table 1 - UCS to FACE Incompatibility and Adaptation

12

caught until TES imported the CODE data model XMI into
their AWESUM® product suite.

The CODE team has since written EA-base CODE SDK
plug-in verification tools for finding and reporting bad
realization relationships between CDM, LDM and PDM
entity types within the models. These tools verified the
existence and direction of association link for all realization
relationships between CDM, LDM, and PDM entity types.
These verification tools were instrumental in finding
missing, broken or reversed realization associations within
the CODE data model in preparation for certifying the
CODE DSDM.

We observed that the CODE data model was more ontology
than a description of concepts within the system. TES
suggested development of a more “real” CODE CDM to
grow from going forward. We noted that the UCS
specification is more of a message model and less a
description of the concept of the various systems. TES
examined the UCS specification and found it very difficult
to leverage in a manner that aligns with the FACE Technical
Standard.

RMS CODE DSDM MBSE Level of Effort

The level of efforts savings estimated for conversion using
AWESUM® is:

• Converted (Conformant) RMS CODE DSDM from FACE
Technical Standard, Edition 2.1.3 to 3.0

Ø 15,000 Data Model Elements

• 1,200 – 3,000 hours saved, i.e., 0.5 – 1.5 person-years
saved.

Next Steps

The roadmap for our tooling is to apply MOSA principals,
and develop reusable software capabilities aligned with
open systems standards and airworthiness guidelines for
applications on Future Vertical Lift (FVL) Family of
Systems (FoS) next-generation aircraft systems both
manned and unmanned and teaming. Working within the
airworthy community and addressing fight-critical and
safety-critical constraints positions these products to
integrate and interoperate with other fielded-systems (e.g.,
land vehicles, ships), which serves to integrate sensor
capabilities across a battlespace, improve situational
awareness within the aircraft and across a common
operating picture (COP) for enhanced safety of flight, safely
of operations, and improved mission success.

TES and RMS collaborations are likely to include
developing systems capabilities for seven domains
approximately 50 software modules to DO-178C Design
Assurance Level B, and FACE Technical Standard edition
3.x Safety-extended.

3. SUMMARY – FACE ECOSYSTEMS - MODEL-
BASED TOOLS APPLIED TO REAL-WORLD USE
CASE DEVELOPMENT EFFORTS
This paper described and illustrated the benefits of model-
based tools applied to the FACE Ecosystem with three (3)
use cases. The theoretical promise of auto-generation from a
sufficiently described Single Source of Truth (SSoT) model,
described by DO-187C supplement DO-331, is observed,
and the level of effort time and resource savings are
qualified and quantified. Small to large data models are
converted from one FACE Technical Standard, Edition 2.1
to 3.0, and savings or resources are quantified. The promise
of reusability, maintainability, and lifecycle sustainability
are realized using MOSA and model-based systems
engineering tools and processes.

The day nears when model-based tools will help us design,
develop, test, integrate, and qualify the next-generation of
complex cyber physical systems and capabilities, those that
will comprise our next-generation aircraft systems. Visit
https://tes-savi.com/ for additional information on these
TES-SAVi AWESUM® Product line MBSE products, and
to obtain a list of related technical publications.

Disclaimer

The views and opinions expressed in this article are those
of the authors and do not necessarily reflect the official
policy or position of any agency of the U.S. government.

 ACKNOWLEDGEMENTS
Thanks to our counterparts and coworkers, the integrated
product team resources that helped develop the products
described in these three uses case examples, the developers
of the TES-SAVi AWESUM® product line suite of MBSE
tools. Namely Mr. William Tanner, TES, Mr. Ken Erickson,
TES, Mr. Edward LeBouthillier, TES, Mr. Chi Dang, TES,
Mr. Robert Kuan, TES; Dr. David Bossert, Raytheon, Mr.
Joe Uidenich, Raytheon, Dr. James Head, Raytheon, Mr.
Steve Thelin, Raytheon, Mr. David Vega Raytheon, Mr. Al
Coit, Raytheon; Mr. Todd Peterson, MSI, Mr. Ken Blemel,
MSI; Ms. Alicia Taylor, U.S. Army PEO Aviation, Mr.
Christopher Crook, U.S. Army PEO Aviation, Mr. Joe
Carter, U.S. Army PEO Aviation, Mr. Jason York, U.S.
Army PEO Aviation, Mr. Matthew Sipe U.S. Army Futures
Command, and Mr. Jesse Givens, U.S. Army PEO Aviation.

We also acknowledge the contributions of others, including
other government, industry, and academia organizations as
we reference only a small portion of their works in this
paper, while knowing full well that those not specifically
referenced were also consulted within either technical
meetings, phone calls, emails, and working groups and other
technical reference papers over many years – thank you!

13

 REFERENCES
[1] RTCA DO-178C – “Software Considerations in Airborne

Systems and Equipment Certification”, December 2011.

 [2] RTCA DO-331 – “Model-Based Development and
Verification Supplement to DO-178C and DO-278A”,
RTCA Dec. 2011.

 [3] FACE - The Open Group (2017), FACE™ Technical
Standard, Edition 3.0; retrieved from
www.opengroup.org/library/c17c

 [4] AHS 72nd Annual Forum – “Next-generation Model-
Based Systems Engineering processes and Tools
Supporting the Airworthiness efforts of Cyber Physical
Systems (CPS)”, Simi, Mulholland, Merrit, 2016.

[5] AR 70-62 – “Airworthiness Qualification of US Army
Aircraft Systems”, US Army Regulation AR 70-62,
Research, Development, Acquisition HQ Department of
Army, 21 May 2007.

 [6] UCS-SPEC-MODEL Version 3.4.eap – “UAS Control
Segment (UCS) Architecture Model”, 27 Mar 2019.

[7] Advisory Circular AC 20-148 – “Reusable Software
Components”, US Department of Transportation, Federal
Aviation Administration, December 2004.

 [8] DoD Instruction – Information Technology Standards in
the DoD, Number 8310.01, 2 Feb. 2015, Incorporating
Change 1, 31 July 2017.

 [9] DoD Directive 5000.1, “The Defense Acquisition
System, May 2003.

 [10] TES-SAVi AWESUM® Product line - Visit https://tes-
savi.com/awesum-products/ for additional information on
these MBSE products

 [11] Army FACE™ TIM Paper – “Model-based Code
Generation for the FACE™ Technical Standard – FACE
Transport Services Segment (TSS) Type Specific Code
and Configuration File”, September 2018

 [12] The Open Group FACE GSG - Open Group Guide
FACE™ Software Supplier Getting Started Guide,
Version 1.0, 2017.

 [13] NAVAIR FACE™ TIM Paper – “FACE™ Cross-
Integration Successes – Honeywell, RTI, Wind River, and
Mercury Systems, 2017 June BITS Event – Model-based
tools used for rapid FACE development and integration”,
October 2017

 [14] Method and Apparatus for Interfacing with Multiple
Objects using an Object Independent Interface Protocol,”
U.S. Patent No. 8,239,586, Tucson Embedded Systems,
Inc., Capability Driven Architecture (TES CDA), 2009.

 BIOGRAPHY

Stephen M. Simi, TES -
serves as TES Vice-President
and Program Manager for
Military Aviation programs,
and TES-SAVI’s Vice
President. Stephen has 33
years of experience design
and developing engineering
and scientific applications,
and managing multiple
programs. Since 2010,
Stephen has been active in the

FACE Consortium’s Integration WorkShop (IWS) – Vice
co-Chair, and Outreach, Conformance, and
Airworthiness sub-committees, and has exhibited at every
FACE Technical Interchange Meeting (TIM). He is
recognized as an industry innovator of agile technologies
that can be applied to Joint forces across the common
operating picture/battlespace of C4ISR assets, and an
industry expert in lifecycle development of reusable
software systems. He has authored technical publications
and presented to the AHS, AOC, AIAA/IEEE societies,
FACE Consortium, and MITRE on areas of software
development, reusable systems, and advanced modeling
and simulations of those systems. Stephen currently
manages U.S. military programs for the Army Aviation,
Air Force, and Vertical Lift Consortium. Stephen has a
B.S. in Physical Sciences (Math, Computer Sciences, and
Engineering) and a M.S. in Engineering from the
University of Maryland. Before TES, Stephen served as
the Director of Software Development, and Director of
Software Business Development at world-renown optics
company Breault Research, served as a Technical Fellow
at the MITRE Corporation; The Boeing Co. working on
the International Space Station; was a Computer Science
college professor, and served various other organizations
designing, developing, and testing engineering and
scientific applications over his 33-year technical career.
He has authored over 20 technical publications.

Sean P. Mulholland, TES -
Co-founder of Tucson
Embedded Systems, Inc.
currently serves as TES CEO
and President. Sean has 30
years of experience in
software intensive system
development, design,
integration and testing,

especially as it relates to mission critical and safety
critical systems. Sean has designed and built several
product lines that produced significant advancements in
the areas of Geographic Information Systems, Military
Ground Systems, Unmanned Ground Vehicles, Unmanned
Aerial Vehicles, and Manned aircraft systems. Sean is a
contributing author to the FACE™ technical reference

14

architecture and has been active serving as a key
resource in FACE Data Architecture development. Sean’s
current work is focusing on the development of a process
and supporting tool suite for optimizing the system
development of safe and secure systems for military and
commercial systems. Sean has a B.S in Computer Science
and Systems Design from the University of Texas at San
Antonio.

Joe Uidenich, Raytheon –
serves as a software technical
lead at Raytheon Mission
Systems for Advanced Missile
Systems programs. Joe has 18
years of experience in software
architecture and development.
He has designed and developed
software system architectures of
various mission planning
systems and components for the

US Air Force and US Navy. Additionally, he has designed
and developed collaborative and autonomous open
architecture frameworks and systems for the DARPA. Joe
has a B.S. in Computer Science from Arizona State
University.

Dr. James Head, Raytheon -
serves as engineering lead for
Modular Open Systems
Approach at Raytheon Missile
Systems. Jim has 20 years of
experience in technology
development, innovation
engineering, and systems
engineering and architecture
working programs in air, sea,
land, and space domains. He

was a AAAS Science and Technology Policy Fellow in the
U.S. Department of State Office of Space and Advanced
Technology and is a Lecturer in the Whiting School of
Engineering, Johns Hopkins University. He has authored
or co-authored over 40 technical publications. Jim holds
a B.Sc. in Astronomy & Physics / Mathematics from
Texas Christian University and a Ph.D. in Planetary
Sciences from the University of Arizona.

