

This information product is approved for public release. The views and opinions of its authors do not necessarily state or
reflect those of the U.S. Government or any agency thereof. Reference to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the U.S. Government or any agency thereof.

Reusable Automated Platform SIL Testing
A Cost-Effective Risk-Reduced Process for Airworthy Reusable Software

 Stephen Simi Steve Koester Richard Zepeda
 TES Program Manager TES Software Engineer TES Software Engineer

Scott Tompkins

US Army SED-Airworthiness

Tucson Embedded Systems, Inc., Tucson Arizona
StephenS@TucsonEmbedded.com

Abstract
Current and projected program requirements are exceeding Department of Defense (DoD) budget and schedule constraints.
This applies to the Army’s requirements to integrate common avionics equipment onto dissimilar aircraft – both manned and
unmanned. As such, innovative approaches and new acquisition business practices are needed to reduce platform integration
costs and speed the fielding of important war-fighting capabilities. The Common Software Initiative (CSI) was formed by
the US Army’s Product Manager of Aviation Mission Equipment (AME) to explore solutions to these problems.

In support of CSI, Tucson Embedded Systems (TES) developed and is applying automated testing capabilities and
performing the verification of an AME Alt-Comms reusable software product. TES acts as a third-party platform integrator
testing the product prior to it being released to the Platforms. The integrator’s environment and automated testing capability
supports the development and test phases and promotes the evaluation of embedded control software across a fleet of
multiple dissimilar platforms prior to formal release. TES has developed a cost-effective risk-reduced automated test
environment to support the development and integration of reusable aviation software for the US Army Aviation Systems.

The planned goal is 100% reuse of automated testing software and testing artifacts, such that one piece of test software and
accompanying artifacts may be certified once and reused across multiple platforms as described in the FAA Advisory
Circular AC 20-148 [1]. The reuse and automation will reduce costly and time-consuming platform System Integration
Laboratories (SILs) testing and will support the formal qualification testing (FQT) efforts of the software. With automated
reusable testing, TES and PM-AME estimates a reduction of more than 70% time and more than 50% cost of integration
(potentially 57%) when compared to current business practices. This would allow the DoD to field two to six additional
capability sets for the same budget as one.

While first applied and used to certify PM-AME’s reusable radio control software targeted for PM-Cargo’s CH-47F and PM-
Kiowa Warrior OH-58, the reusable automated testing capability can be applied to all avionics capabilities including
communications, navigational, sensors, actuators, etc.

Introduction
The Army’s Assistant Secretary of the Army (Acquisition,
Logistics, and Technology) is spearheading efforts [2] for
“rapid equipping,” “rapid fielding,” and transforming the
Army’s acquisition processes. In response to this call, the
Army’s Product Manager, Aviation Mission Equipment
(PM–AME), is seeking to implement a process by which
common software products, to include common avionics
integration software, can be identified, acquired, tested, and
integrated across the disparate Army Aviation platforms.

Presented at the American Helicopter Society 66th Annual
Forum, Phoenix, AZ, May 11-13, 2010. Copyright © 2010
by the American Helicopter Society International, Inc. All
rights reserved.

The PM-AME has identified the need for this process
through the Common Software Initiative (CSI).

Implementation of the CSI would position AME into
conformance with the acquisition strategy outlined in
Chapter 2 of the Defense Acquisition Guidebook [3] and
with the directives of AR 70-1 Army Acquisition Policy [4].
These two DoD documents outline prescribed requirements
for standardization, commonality, and systematic reusability
that will guide Army Aviation practices for improving
budget-to-capability performance.

In support of CSI, PM-AME acquired a reusable Alt-Comms
software product targeted for the PM-Cargo’s CH-47F and

PM-Kiowa Warrior OH-58 platforms. This product controls
the AN/ARC-201D and AN/ARC-231 radios and will be in
service through 2020, until replaced by Joint Tactical Radio
System (JTRS).

PM-AME also contracted Tucson Embedded Systems (TES)
to act as a third-party platform integrator testing the reusable
product prior to it being released to these Platforms. TES
has developed a cost-effective risk-reduced automated test
environment to support the development and integration of
reusable aviation software (see Figure 1).

Figure 1. Integrator’s Environment

Using a combination of actual target hardware (control
display units, and military radios) and automated testing
capabilities, an engineer can read in a software release and
execute a set of test scripts to verify the control and
functional operations of these Alt-Comm radio capabilities.
There are 170 functions operating: Ground, HaveQuick,
Maritime, SATCOM, SINCGARS, UHF LOS, and VHF
ATC, and VHF FM capabilities.

The test results were used in the development phase, quickly
identifying operational issues to the software developer
earlier in the life-cycle. TES worked closely with the
developer improving the capabilities with each release and

ensuring the product
(software and

integrator’s
documentation) is
prepared for Platform
integration efforts.

TES also worked
with Army
representatives from
the Aviation &
Mission Research,
Development, and

Engineering Center (AMRDEC) Aviation Engineering
Directorate (AED) and the Software Engineering Directorate

(SED) to confirm that the results were suitable as supporting
artifacts for Airworthiness Qualification Substantiation
Records as defined in AR 70-62 [5].

What AME and TES jointly discovered was a potential for a
tremendous time and cost savings for the Army, which also,
through reuse, represented a tremendous risk reduction to the
program.

TES modeled the process described in FAA Advisory
Circular AC 20-148 [1] (see Figure 2) as it would be applied
to the SED-AED certification process of the Army’s rotary
fleet, assuming that software tests and testing artifacts could
be reused across multiple platforms and support Reusable
Software Component (RSC) testing as well as platform
integration testing.

The process, aligned with FAA’s AC 20-148, implies third-
party developers could produce airworthy Reusable
Software Components (RSC) and software Reusable
Software Verification Components (RVC) which meet DO-
178B guidelines [6], build and execute system-level tests at
a government-owned Aviation Systems Integration Facility
(ASIF), and then with a high-level of confidence rebuild the
RSC and RVC on platform-specific SILs and re-run the
RVC saving both time and money. On completion, the
components then proceed to flight-testing.

Figure 2. Vision for Reusable Automated SIL Testing

Through the process, an airworthiness qualification is
achieved and an acceptance letter of the RSC and its
reusable artifacts are presented back to the Developer. The
RSC, RVC, and supporting documentation are subsequently
reused for integration on other platform SILs, etc.

AED and SED identified that the automation can be used in
system-level testing in flight representative Platform System
Integration Laboratories (SILs). The key was to have TES
engineers work with the Platforms and define the insertion
points for this automation, such that it did not “contaminate”

ER
el

-3
Ju

n-
08

ER
el

-4
Se

p-
08

ER
el

-5
Ap

r-0
9

E
R

el
-5

.2
M

ay
-0

9
E

R
el

-5
.3

Au
g-

09
ER

el
-5

.4
S

ep
-0

9

Number of Identified
Problems

Percentage of
Functions Passing

46 54

79 83 83 91

45 42
33

17 25
15

0

20

40

60

80

100

Integrator's Findings of Alt-Comms Product

Desktop Development Desktop Development
Develop RSC and RVCDevelop RSC and RVC

IntegratorIntegrator plugs RSC into plugs RSC into
their Platform Buildtheir Platform Build and reand re--

executes RVC at theexecutes RVC at the
Platform SILPlatform SIL

Release toRelease to
Flight TestingFlight Testing

Chinook SILChinook SIL

Developer integrates on Developer integrates on
a a Reference Model Reference Model and and

executes RVC executes RVC
performing systemperforming system--levellevel

testingtesting

ASIFASIF

ASIFASIF platformplatform--specific specific
buildsbuilds, executes RVC , executes RVC

performing systemperforming system--level level
testing ontesting on CAAS and/or CAAS and/or
MCAPMCAP--II configurationsII configurations

DocumentationDocumentation

SoftwareSoftware

Software TestsSoftware Tests

Blackhawk SILBlackhawk SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts
Issuance

22ndnd CertificationCertification

11stst Certification Certification --
AED provides an AED provides an

acceptance letter for acceptance letter for
RSC to the RSC to the
DeveloperDeveloper

Process is based on FAA’s AC 20-148
“Reusable Software Components”

IntegratorsDeveloper

Apache SILApache SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts

33rdrd CertificationCertification

Shared
Common S/W

Repository

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts

44thth CertificationCertification

Kiowa SILKiowa SIL

Desktop Development Desktop Development
Develop RSC and RVCDevelop RSC and RVC

IntegratorIntegrator plugs RSC into plugs RSC into
their Platform Buildtheir Platform Build and reand re--

executes RVC at theexecutes RVC at the
Platform SILPlatform SIL

Release toRelease to
Flight TestingFlight Testing

Chinook SILChinook SIL

Developer integrates on Developer integrates on
a a Reference Model Reference Model and and

executes RVC executes RVC
performing systemperforming system--levellevel

testingtesting

ASIFASIF

ASIFASIF platformplatform--specific specific
buildsbuilds, executes RVC , executes RVC

performing systemperforming system--level level
testing ontesting on CAAS and/or CAAS and/or
MCAPMCAP--II configurationsII configurations

DocumentationDocumentation

SoftwareSoftware

Software TestsSoftware Tests

DocumentationDocumentation

SoftwareSoftware

Software TestsSoftware Tests

Blackhawk SILBlackhawk SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts
Issuance

22ndnd CertificationCertification

Blackhawk SILBlackhawk SILBlackhawk SILBlackhawk SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts
Issuance

22ndnd CertificationCertification

11stst Certification Certification --
AED provides an AED provides an

acceptance letter for acceptance letter for
RSC to the RSC to the
DeveloperDeveloper

Process is based on FAA’s AC 20-148
“Reusable Software Components”

11stst Certification Certification --
AED provides an AED provides an

acceptance letter for acceptance letter for
RSC to the RSC to the
DeveloperDeveloper

11stst Certification Certification --
AED provides an AED provides an

acceptance letter for acceptance letter for
RSC to the RSC to the
DeveloperDeveloper

Process is based on FAA’s AC 20-148
“Reusable Software Components”

IntegratorsDeveloper

Apache SILApache SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts

33rdrd CertificationCertification

Apache SILApache SILApache SILApache SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts

33rdrd CertificationCertification

Shared
Common S/W

Repository

Shared
Common S/W

Repository

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts

44thth CertificationCertification

Kiowa SILKiowa SIL

Reuse the RSC, RVC and artifactsReuse the RSC, RVC and artifacts

44thth CertificationCertification

Kiowa SILKiowa SILKiowa SILKiowa SIL

the Platform SIL environment. To instill confidence in the
results of the automated testing, operators performed
selected functions by hand and those results were compared
against the automated results.

Potential Cost Avoidance – 57%
To quantifying the time and cost savings, current business
practices were compared to those supplemented with as
much automation that would be acceptable to the certifying
authority. TES and PM-AME found that time, costs, and
risks could be reduced. Interestingly enough, the largest
saving came from the ability to auto-generate and reuse life-
cycle-testing artifacts.

The estimated cost to test one new capability integrated onto
a platform was approximately $225,000. By using
automated testing that cost could be reduced to $187,000, a
17% reduction. That savings grew with each reuse of the
testing artifacts.

When TES and PM-AME quantified the cost to develop the
corresponding certification artifacts, and compared that
against the cost of the automation, auto-generating testing
artifacts and reusing those artifacts, subtracted out the cost
of development, and projected the costs and cost avoidance
forward for three other platforms; a potential savings of 51%
was found.

The cost of verification and validation for the integration of
one Alt-Comms capability set onto four platforms including
airworthiness substantiation artifacts is approximated to be
$3.1 Million to PM-AME with current business practices.
Whereas the cost, if reuse and automated testing were
applied would be $1.3 Million, avoiding $1.8 Million, or
allowing PM-AME to fund and integrate two additional non-
automated up to six additional automated capability sets
with the same budget by using automation and reuse. This
could become the “CSI new acquisition business practice.”

Considering the timesaving realized with this new business
practice, more capabilities could be funded and fielded to the
war-fighter faster thereby addressing the DoD budget and
schedule constraints and improving budget-to-capability
performance.

The planned goal is 100% reuse of automated testing
software and testing artifacts, such that one piece of test
software and accompanying artifacts may be certified once
and reused across multiple platforms as described in the
FAA Advisory Circular AC 20-148 [1]. The reuse and
automation will reduce costly and time-consuming Platform
SILs testing and support the software formal qualification
testing (FQT) efforts. This paper describes those efforts.

Background
The Army has an ongoing need to integrate Aviation
Mission Equipment products into aviation platforms. This
integration can occur at aircraft delivery or as an aircraft
upgrade. The integration cycle includes a significant effort
in developing software to interface to new and changing
AME products and certifying those products onto the
Army’s fleet of Aviation Platforms.

Each platform prime contractor is responsible for developing
the software to interface with new aviation equipment.
Historically, equipment was introduced as mission-specific,
and added as non-integrated (“strap-on”) equipment into
their respective platforms.

Today’s aviation mission equipment is highly integrated into
the platform and moreover the same equipment is integrated
within different platforms.

This arrangement has lead to ad hoc development and
stovepipe systems resulting in duplication of effort across
the aviation platforms for integrating common aviation
equipment. It has also resulted in duplication of efforts
within an aviation platform when integrating a new piece of
aviation equipment that has similar functional capabilities to
already integrated equipment. Duplication of testing across
multiple aviation platforms is a significant cost factor of
integration and fielding costs.

The result is that current and projected program
requirements are exceeding budget and schedule constraints.
To address these issues, both technological and process
solutions must be developed within the Aviation community.
Technological solutions must be based on the integration of
functional capabilities across aircraft, and process solutions
are needed to accommodate cross-platform integration and
certification requirements.

What follows is an introduction and description of how
AME’s first reusable Alt-Comms application program
interface (API) software was put into a process that allowed
for the software to be rapidly verified, certified, and reused
across the aviation fleet. Verification results were obtained
quickly, and when used in conjunction with the development
phase of the software, the results identified and assisted in
the resolution of software operational issues early in the
development phase.

The Platform integrator’s environment and how TES
developed and used automated testing capabilities for the
rapid verification of each software release is described
below in Figure 3. A description of the Platform integrator’s
environment, the process used to parse the developer’s
feature set, auto-generate tests scripts, and rapidly perform
verification on LRU operations follows.

AME’s Alt-Comms Integrator’s Environment
The integrator’s environment consists of a combination of
actual military hardware and test environment hardware and
software. Collectively, the combination is used to rapidly
verify line replaceable unit (LRU) operations using AME’s
Alt-Comms reusable API software. Illustrated below is the
hardware used in the Army’s Alt-Comms integrator’s
environment, which is located in Tucson Arizona (not
pictured is the ViaSat DOCCT/S used to simulate SATCOM
waveform operations).

Figure 3. Platform Integrator’s Environment - Hardware

AME’s reusable Alt-Comms API is targeted for PM-Cargo’s
CH-47F. As such, the integrator's environment includes the
same essential hardware used in the production
environment--the AN/ARC-201D and AN/ARC-231 radios,
as well as the CDU-7000. In order to provide several
enhanced capabilities for test writers, however, the
environment has been expanded with additional hardware
devices. A relay card that simulates the Push-To-Talk (PPT)
switch of the radio microphones, a ViaSat DOCCT/S unit
used for SATCOM simulation, and a spectrum analyzer that
can verify radio transmissions and frequency hopping all
have been added to support the automation process.
Additionally, a laptop computer, primarily used to run test
scripts over TCP/IP in conjunction with the CDU-7000, has
been equipped with a 1553 card that monitors the bus traffic
supporting low-level debugging capabilities.

There are three primary components of software in the test
environment: 1) a set of Java-based programs for converting
provided APIs (C++ header files, for example) to project-
specific testing code, 2) a suite2 of platform-independent
C++ libraries and tools for building the testing environment
and wrapping devices (both hardware and software) in
common code modules, and 3) an application for running
user test scripts. Not all of the components are necessary for

2 The TES’ CDA, Patent Pending, Core C++ libraries and
PCTS testing application were pulled unmodified from TES’
product line. The CDA Tool was modified and tailored for
this effort.

all projects, but when combined and utilized together, they
provide a robust and complete package that implements
many of the testing tasks seen in the embedded systems
industry.

The first component, the CDA Tool plugin, is a set of
importers/exporters and a visual interface for viewing and
editing the API information. The importers take the APIs in
its raw format, and extract the key information into
hierarchal columns of data, which includes everything from
function names and parameters, to module documentation,
and tracing tags. From these lists, which the lab test
engineer can navigate, update, and archive to a standard
XML format, a set of project-specific source files are
created. In general, the exporters are not sufficient to meet
all the test code and test script generation requirements of
the project, but they can easily be extended through typical
programming inheritance to cover a large range of
applications. TES modified its product line CDA Tool to
import the AME Alt-Comms API.

Secondly, the test engineer utilizes a set of C++ core
libraries (CDA Core). The libraries are designed for
operating environment portability and work on a multitude
of platforms and real-time operating systems (i.e., Integrity,
LynxOS, VxWorks, Linux, and Windows). Usually the
provided functionality is invoked within the source code
generated by the exporters, but the libraries can be also
utilized independently for additional processing or within
wrappers around existing tools or hardware devices.

The main advantage of using the CDA Core is to provide a
straightforward mechanism for getting disparate devices to
communicate within the same testing environment. Also in
addition, the libraries contain several well-tested
communication protocols (i.e., Sockets, TCP, 1553, RS-232)
that conform to a standard interface, making the ability to
swap between protocols as simple as changing a parameter
in one line of code.

The third and final software component utilized in the
integrator’s test environment is a script-running application
called the Programmable Control Test System (PCTS).
Often times the device under test has no means to store or
process scripts, and, in the case of a software API compiled
for several targets, is not inherently bound to any particular
hardware. PCTS addresses this problem by providing a safe,
platform-independent separation to the devices. Multiple
devices, communicating using different protocols, can be
accessed concurrently through one of two common scripting
languages, REXX and Python. Additionally, PCTS provides
several common test harness features—qualified
verification, results logging, and report generation.

The next section describes the process of generating the test
environment and test scripts for each AME’s Alt-Comms
API software release.

Process of Auto-Generated Testing
One benefit of the integrator’s environment is the ability to
use the CDA tools to auto-generate integrated code and test
scripts for the test environment, which are then used to
verify the functional operations of the system very
efficiently.

The TES’ developed PCTS and CDA tools are product line
products. Using these tools, an engineer can read in an Alt-
Comms software release and auto-generate test scripts and
the underlining symbol tables and software required to auto-
test the reusable software component on the target hardware.

Results have been impressive. Within a few hours of
receiving a new software release, an engineer can begin the
verification of the AME Alt-Comms API software operating
on actual target hardware (CDU-7000) and controlling actual
military radios (AN/ARC-231 and AN/ARC-201D). This
process, if performed without automation, typically takes
several weeks or months to accomplish. Using the
integrator’s environment and the auto-generated automated
testing suite has greatly reduced this time and allowed
further enhancement of test capabilities.

The testing process has four distinct actions as is illustrated
in Figure 4 and as described below.

Test PlatformTest Engineer TES Tools

AME Alt
Comms

API
(e.g. C++

header files)

Test
Reports

Load into
Database

Run
Tests

Prepare
Scripts

Generate integrated code

symbols

finished scripts

scripts

1

2

3
4

Test PlatformTest Engineer TES Tools

AME Alt
Comms

API
(e.g. C++

header files)

Test
Reports

Load into
Database

Run
Tests

Prepare
Scripts

Generate integrated code

symbols

finished scripts

scripts

Test PlatformTest PlatformTest EngineerTest Engineer TES ToolsTES Tools

AME Alt
Comms

API
(e.g. C++

header files)

Test
Reports

Load into
Database
Load into
Database

Run
Tests
Run

Tests
Prepare
Scripts
Prepare
Scripts

GenerateGenerateGenerate integrated code

symbols

finished scripts

scripts

1

2

3
4

Figure 4. The 4-Step Process of Auto-Generation

1) Import the Reusable API into Database. TES tools are
used to import the AME Alt-Comms API from its C++
header files. The CDA Importer parses the API headers files
and populates a database.

2) Auto-Generate the Test Environment. Using the
populated database, TES tools then generate integrated code,
symbol tables, and test scripts. The integrated code
produced is platform independent and will run on any target
platform supported by the reusable software component.
The integrated code when combined and used in conjunction
with CDA core libraries creates a test environment prepared
to test the API on target platforms. The symbol tables
provide a mapping to invoke the reusable API by the PCTS
script engine. PCTS is capable of communicating with the
target through various protocols, in this case through
TCP/IP.

3) Prepare/Finish Test Scripts. Typically preparing the test
scripts is the most time consuming process outside of the
actual testing. The testing of 170 Alt-Comms tests typically
required several weeks to more than a month to complete.
TES was able to automate this process by separating the
scripting logic from the data. This allows the logic to be
reused on subsequent releases and the data portion to be
generated from the tool and the database. Currently
generated scripts are being diffed and compared with scripts
that were generated from the previous API revision to
quickly identify revision modifications.

4) Perform Automated Testing - Running Batch Test Scripts.
The scripts are then batched together, run, and test results
are recorded for software verification and validation
purposes. Because TES has automated the development of
the test environment, regression tests can be performed the
very day a new revision of the AME Alt Comms software is
made available. A typical testing cycle utilizing reusable
test automation still requires results analysis after conclusion
of the text executing. Including this step, the total test cycle
for the PM-AME reusable Alt-Coms API can be completed
in a week.

Overall, with this process set of revised testing
methodology, the time to verify a software release has been
reduced from several weeks or more than a month down to a
week, i.e., 5+ weeks down to 1-week.

Future Process Enhancements to Test Robustness. The
FAA’s DO-178B software verification processes [6]
specifies objectives for robustness testing. The amount of
robustness testing varies in degrees depending on the
certification level of the product. For software robustness
testing, parameter inputs are to be tested outside the normal
range to demonstrate that the software does not result in
unpredictable outputs or failures.

To support the automation of this verification process
objective, TES is currently designing and developing ways
to specify more descriptive header files so that parameter
boundary information can be incorporated into the database.
This will in-turn support the auto-generation of more
extensive test scripts to include boundary condition testing

(i.e., five tests scripts per parameter). The goal is to extract
sufficient information from the header files and auto-
generate tests scripts that would support the verification of
DO-178B’s robustness testing objective.

The rapid verification process was designed to work in
conjunction with the Developer’s design and development
phase so that coding issues can be identified early in the
process. If the API is to be reused as intended, most of the
test suite is reusable simply by injecting a different CDA
core library.

The combination of auto-generation, auto-testing, and
reusing testing artifacts is producing tremendous savings in
integration time and costs, and with reuse and early
identification of issues, it is also reducing program risk.

Verification Activities
Verification activities are the development, documentation,
and execution of specific methods to specific portions of the
product or product development work products. The
methods may be by review, testing, analysis, simulation,
mock-up, black box, white box, formal methods, or other
reasonable technique or methodology deemed suitable.

Additionally, the verification methods chosen are reviewed.
Every verification result is reviewed to discover any errors
that need to be fixed, and those problems discovered are
identified and dealt with in a documented process. All
information (method, procedure, results, and problems) is
documented and traceable back to the requirement and
specification documents.

Software verification process objectives are satisfied through
a combination of reviews, analyses, and the development
and execution of test cases and procedures. Reviews and
analyses provide an assessment of the accuracy,
completeness, and verifiability of the software requirements,
software architecture, and source code. The development of
test cases and procedures may provide further assessment of
the internal consistency and completeness of the
requirements. The execution of the test procedures provides
a demonstration of compliance with the requirements.

Verifications Support for Army Airworthiness
Certifications
The Aviation and Missile Research, Development and
Engineering Center (AMRDEC) Aviation Engineering
Directorate (AED) assesses and develops the flight
airworthiness qualification requirements for each AME
product. The AMRDEC Software Engineering Directorate
(SED) evaluates software life-cycle artifacts and assesses
platform software airworthiness on behalf of AMRDEC
AED.

A program’s airworthiness requirements are documented in
an Airworthiness Qualification Plan (AQP), which is

generated by the AED with input from the SED. All system
life-cycle phases are addressed during the airworthiness
evaluation process; however, the verification phase will be
addressed here in more detail.

A verification plan must be developed early in the project to
affect thorough product verification. AED and SED must be
consulted during the development and review of the plan.
The primary goal of a verification plan in this context is to
plan for compliance with the verification requirements
contained in the AQP. The plan should include the specific
test activities, process, artifacts, and program milestones that
will be completed with regard to verification. AED and
SED will review the verification work products and serve as
an independent test witnesses to ensure the processes were
followed and the results are acceptable.

It is essential to the success of an automated testing
approach for the automated testing to be incorporated into
the verification plan. By planning for test automation early
in the product lifecycle supporting processes can be put in
place. Planning for automated testing can enable the
adoption of coding standards and design standards that
support automated methods. For example, the use of
descriptive header files which specify boundary values can
be required to support the automated test script generation
process for robustness testing. The verification plan
encompasses both software and hardware implementations.
Verifying activities depend on:

• Required level of process rigor

• Type of product, product constituents

• Development environment

• Concept of Operations / Concept of Employment

• Target platform requirements for integration

The primary way in which reusable automated testing would
fit into the verification of AME products is by generating a
test environment which utilizes platform independent test
scripts. These test scripts would be traceable to the system
requirements and provide complete (100%) coverage of the
system specification. SED has evaluated the approach
presented by TES and shown that given a reasonable set of
assumptions, it is possible and indeed profitable to meet the
airworthiness verification goals utilizing reusable automated
testing methodologies.

Verification is unique to each product, and evaluating the
completeness of a verification plan requires understanding of
all these factors. Analysis must be performed on each
product or product integration to verify that the assumptions
used during the generation of the reusable verification
components are not violated. The Verification Checklist [7]

provides general areas of verification activities. A
combination of government and developer resources must
consult the verification plan to determine which activities
are appropriate for a specific requirement. Executing the
verification plan will require a significant allocation of
resources. This reinforces the need to develop the plan early
in the project to manage schedule and resource needs. Test
automation and software reuse was combined on this effort
as a means to reduce verification time and cost.

Verification Audits and RVC Qualification
A process that is integral to a software verification plan is
the Verification Audit. Audits typically cover a minimum of
15% of the test cases and procedures. Of the total, 5%
should be end-to-end audits starting with requirements
tracing and continue through the process to the results. All
activity around the audit items should be checked, which
includes problem reporting and problem resolution. The
intent is to assure the documented processes are correct,
appropriate, and are followed.

Verification Audits also assist the certifying authority in
providing assurance in the correctness and completeness of
the automated testing performed by the RVC. To instill
confidence in the results of the automated testing, operators
performed selected functions by hand and those results were
compared against the automated results.

A RVC itself would ideally be developed and qualified in
accordance with DO-178B as a verification tool.
Qualification is required if a tool automates a software
verification process activity. The benefit of tool
qualification is that the tool has the pedigree to fully or
partially automate the testing of aviation software without
requiring additional verification processes.

Automated Unit and System-Level SIL Testing
As identified, testing is categorized into Unit-White Box,
CSC-Black Box, Integration SIL, and Flight Test.

SED, after review of the automated test scripts, identified
that it would accept the results for Unit/Functional-White
Box testing, with a one-to-one mapping of test script to
requirement. That is, the Alt-Comms (AN/ARC-231 and
AN/ARC-201D) Common Avionics Architecture System
(CAAS) partitioned requirements are being met using the
automated test scripts.

AME Engineering Life Cycle Management
PM-AME manages its product lifecycle in accordance with
Systems Engineering Process and Procedures for Life-Cycle
Management Command Acquisition [7], which includes
Requirements Management, Change Control Board, and
storage of all life-cycle and verification artifacts within an
engineering repository.

AME Engineering Repository
Verification artifacts including plans, procedures, test cases,
scripts, and reports are configuration controlled and
managed. They provide a clear and comprehensive history
of verification for certification analysis and future
development and maintenance activities.

The AME Engineering Repository [8] is a controlled library
of AME product and project documents, references,
standards, procedures, manuals, etc. The Repository
provides control and access to the information about
products, projects, activities, and external information used
in AME business.

The AME Engineering Repository is intended for products
approved for reuse by the certification authority. AME
Common Software Initiative Reuse of Common Software [8]
identifies what artifacts are controlled, how they are
managed, and applications of the AC-20-148 [1] as applied
to PM-AME reusable products.

Test Readiness and Formal Qualification Tests
Typically two formal events are used to qualify the readiness
of a system, TRR and FQT. The intent of the Test
Readiness Review (TRR) is to determine that the product or
system’s requirements, design implementation, test cases
and procedures are complete and have reached a state of
maturity to perform Formal Qualification Test (FQT).
Additionally, TRR ensures that the FQT environment is
ready for a successful FQT. One test readiness review is
conducted for each major configuration item [typically
identified as a Computer Software Configuration Item
(CSCI) or Hardware Configuration Item (HWCI)]. This
review looks at test plans and procedures, Computer
Software Unit (CSU) and Computer Software Component
(CSC) test results, and informal CSCI testing to verify that
the completed CSCI is ready for formal testing and approval.
The TRR occurs after all change proposals are addressed for
the product’s baseline.

Typically the product developer supports two dry-run test
events and one formal FQT. TES and AME are interested in
comparing the cost and time of current business practices
against the cost and time of automated testing. This testing
assumption formed the basis for investment in the “CSI new
acquisition business practice” utilizing RVC methodology.

Cost Estimations and Potential Savings with Automated
Platform SIL Testing and Documentation Reuse
In order to show the business case for automation and reuse,
TES and AME qualified and quantified the activities of
TRRs and FQTs, and compared the results.

The projected cost avoidance would allow PM-AME to fund
and integrate two to eight additional capabilities using
automation business practices with the same budget.
Considering the timesaving with this new business practice,
PM-AME could fund and field more capabilities to the war-
fighter faster thereby addressing the DoD budget and
schedule constraints and improving budget-to-capability
performance.

The assumptions of the cost estimates are illustrated in the
following tables.

Cu
rre

nt
 B

us
in

es
s

Pr
ac

tic
e

Re
us

ab
le

 A
ut

om
at

ed
 S

cr
ip

tin
g

Table of Assumptions
2 2 Num. Dry Run(s) conducted
1 1 Platform SIL Software FQT

12 8 FQT labor hours per day

2 0.5 FQT labor weeks low-end
3 1 FQT labor weeks high-end

2 1 Government Resources supporting FQT
3 2 Full-Time Engineer (FTE) supporting FQT

80$ 80$ assumed salary Documentation (hourly rate)
100$ 100$ assumed salary Engineer (hourly rate)

The Platform FQT time estimates and potential savings
using automation are quantified in the following table.

Cu
rre

nt
 B

us
in

es
s

Pr
ac

tic
e

Re
us

ab
le

 A
ut

om
at

ed
 S

cr
ip

tin
g

Time Investment and Potential Savings per Platform FQT
1800 180 FQT hours time investment low-end
2700 360 FQT hours time investment high-end

Additional Time to Develop Reusable Automated Test Scripts
1280 hours time investment low-end - 16 weeks - 2 FTE
1920 hours time investment high-end - 24 weeks - 2 FTE

Total FQT Time Investments and Potential Savings
1800 1460 FQT hours time investment low-end
2700 2280 FQT hours time investment high-end

Cost Investments and Potential Savings
180,000$ 146,000$ cost investment low-end
270,000$ 228,000$ cost investment high-end

Automation Time-Labor Return on Investments
34,000$ First Platfom Cost Avoidance - low-end
42,000$ First Platform Cost Avoidance - high-end

162,000$ Per Platform Reuse Cost Avoidance - low-end
234,000$ Per Platform Reuse Cost Avoidance - high-end

19% low end cost avoidance (Single Platform)
16% high end cost avoidance (Single Platform)

Projected Savings for Multiple Platforms
3 3 4 FQTs, assuming reuse of automation on 3 Platforms

7200 2000 total hours time investment low-end
10800 3360 total hours time investment high-end

720,000$ 200,000$ total cost investment low-end
1,080,000$ 336,000$ total cost investment high-end

900,000$ 268,000$ Average Cost - Cost Potential with automation

72% low end savings with automated testing and reuse (3 Platforms)
69% high end savings with automated testing and reuse (3 Platforms)

70.6% Average Cost Avoidance

The airworthiness documentation required to support FQT
and the potential reuse savings are quantified in the
following table.

Cu
rre

nt
 B

us
in

es
s

Pr
ac

tic
e

Re
us

ab
le

 D
oc

um
en

ta
tio

n

Documentation Required for Airworthiness
document labor - units: weeks Reusable

3 3 Software Requirements Specification Yes
4 4 Software Design Description Yes
1 1 Software Version Description Maybe
3 3 Software Product Description Maybe
3 3 Software Test Plan Yes
6 6 Software Test Description Yes
3 3 Software Test Report No
2 2 Requirements Verification Matrix (Tracability) Yes
2 2 Software Problems / Change Reports No
2 2 Safety Assement Report (software) No
2 2 Statement Coverage Analysis Testing (Path Testing) Yes
4 4 Software Verification Cases and Procedures (SVCP) Yes

7000 7000 hours for documentation per platform
4800 can reuse 24 of 35 weeks per platform (69%)

560,000$ 560,000$ cost for documentation per platform
4 reuse multiple platforms

2,240,000$ 1,088,000$ total documentation costs
51.4% reuse documentation cost avoidance

The combined cost avoidance of multiple Platform FQT
using automations and documentation reuse are quantified in
the following table.

Cu
rre

nt
 B

us
in

es
s

Pr
ac

tic
e

Re
us

ab
le

 A
ut

om
at

ed
 S

cr
ip

tin
g

Combined Cost Avoidance with Automation and Documentation
Reuse

Projected Total Cost Avoidance
900,000$ Total Cost Current Method for 4 SW FQTs
268,000$ Total Cost Automated Method for 4 SW FQTs
632,000$ total cost avoidance

3,140,000$ Total Cost Current Method for 4 SW FQTs + Documentation
1,356,000$ Total Cost Automated Method for 4 SW FQTs + Documentation reuse
1,784,000$ total cost avoidance including documentation

57% Projected Cost Avoidance

2.0 additional BAU capability sets for the same budget as one set
6.7 additional automated capability sets for the same budget as one set

* not assuming auto-generation of documentation

Summary
Two reuse concepts have been combined and are being used
by PM-AME to improve budget-to-capability performance.
The first is the use of common software, and the second is
the use of automated reusable testing. Combined they have
the ability to reduce program risk and field more capabilities
to the war-fighter faster.

In the Government, the challenges for the adoption of usable
common software are two-fold. First is the acceptance of
new acquisition practices. The new acquisition practices
must be crafted to allow the product developer intellectual
property protection, while allowing the PM-AME the
management and control of all life-cycle work products.
Developers will have to provide either their product under
either Government Purpose Rights or Unlimited Rights.
Contract deliverables and sustainment contracts will have to
be carefully crafted to protect the interest of the developer
and the investment of the government.

Second is the resistance to breaking down the system of
“stovepipes.” This will reduce direct integration funding to
Platforms and platform integrators to fund common cross-
platform solutions, and there will be resistance to adoption
of reuse and automation until confidence in the “plug-and-
play” software and the reproducibility of results is
established and schedule reductions are realized within these
Programs.

In an arena where war-fighting capabilities are a big
business advantage, moving toward more open systems and
sharing software and testing artifacts among Programs
versus stovepipes will be a challenge for both the Platforms
and their industry partners. With any change is resistance,
especially when funding lines are shared across programs.

In order for the U.S. Military to maintain its readiness and
war fighting advantage, it will require top-level support
before Government and industry will embrace the
implementation and conformance with the acquisition
strategy outlined in Chapter 2 of the Defense Acquisition
Guidebook [3] and with the directives of AR 70-1 Army

Acquisition Policy [4]. These DoD documents outline
requirements for standardization, commonality, and
systematic reusability that will guide Army Aviation
practices for improving budget-to-capability performance.

PM-AME and SED invested in efforts of software reuse and
reusable automated testing, and they have shown that the
U.S. Military can achieve these Defense Acquisition
objectives, maintain its readiness and war fighting advantage
by embracing the combination of reuse and automation.

For additional information on Tucson Embedded Systems’
common software products and automated testing
capabilities for airworthiness certifications (commercial and
military), visit www.TucsonEmbedded.com.

Lessons Learned
Three areas for future growth and research were identified
during this effort.

• First is the need to formalize more descriptive header
files used in reusable API control code. These
descriptions must be sufficient to specify parameter
boundary values to support the automated generation of
test scripts that can be used for FAA’s DO-178B’s
robustness testing [6].

• Second is the need to instill confidence in the results of
the automated testing. The reusable verification
component (RVC) itself would ideally be developed and
qualified in accordance with DO-178B as a verification
tool. Qualification is required if a tool automates a
software verification process activity. The benefit of
tool qualification is that the tool has the pedigree to
fully or partially automate the testing of aviation
software without requiring additional verification
processes.

• Third is the need to accommodate additional
communication protocols, e.g., SNMP etc, so that future
waveforms and radios can be incorporated into the
integrator’s environment, ensuring that the environment
remains viable well into the future.

To reach the goal of 100% reuse of automated testing
software and testing artifacts, such that one piece of test
software and accompanying artifacts may be certified once
and reused across multiple platforms as described in the
FAA Advisory Circular AC 20-148 [1], these three areas of
growth should be further investigated.

PM-AME is a proponent of software reuse within Army
Aviation, and will continue to support its implementation
into the Army Acquisition process. Software reuse and
automation will reduce costly and time-consuming Platform
SILs testing and support the software formal qualification
testing efforts.

Conclusions

The PM-AME funded TES, SED, and AED efforts to create
a Platform integrator’s environment and develop automated
testing capabilities to perform rapid verification of PM-
AME’s Alt-Comms common software on Army LRUs and
artifacts. This has proved to be a cost-effective risk
reduction to the program.

While architectures exist that can claim software reuse, few,
if any, can claim software reuse for safety critical airworthy
applications and also include reusable automation to support
the Airworthiness Qualification efforts.

TES took PM-AME’s Alt-Comms common software
product and is verifying the control of two tactical radios
integrated on two disparate Aviation platforms, Chinook and
Kiowa Warrior, using one automated test suite.

We have found that when combining test automation and
reuse, PM-AME and TES estimates a reduction of more than
70% time and more than 50% cost of integration (potentially
57%) when compared to current business practices. This
would allow the DoD to field two to six additional capability
sets for the same budget as one.

The knowledge and experience gained from this effort has
advanced the methods of common software development,
airworthiness qualifications, and clarified a vision that will
further the implementation of the Army’s Common Software
Initiative.

The long-term vision for AME should include an outline of
AME Best Business Practices [7, 8, 9, 10, 11, 12] for not just
communications, but for all of the AME Functional Areas
(Communications, Mission Planning, Interoperability, and
Navigation) using the CSI and reuse concepts as they
evolve.

For additional information about software reuse and
automated testing capabilities, contact PM-AME or Tucson
Embedded Systems, Inc. Mr. Stephen Simi, TES–Army
Program Manager at 520.575-7283x154.

References
[1] “Advisory Circular AC 20-148 – Reusable Software
Components,” US Department of Transportation, Federal
Aviation Administration, December 2004.

[2] Claude M. Bolton Jr. Assistant Secretary of the Army
(Acquisition, Logistics, and Technology), “Talks to Defense
AT&L,” Defense AT&L, November-December 2004.

[3] “Defense Acquisition Guidebook, Chapter 2–Defense
Acquisition Program Goals and Strategy,” 20 December
2004.

[4] “Army Acquisition Policy, AR 70-1,” 16 January 2006.

[5] “Airworthiness Qualification of U.S. Army Aircraft
Systems, AR 70-62,” Research, Development, Acquisition
HQ Department of Army, 21 May 2007

[6] RTCA DO-178B, "Software Considerations in Airborne
Systems and Equipment Certification," RTCA, Inc., 1140
Connecticut Avenue, Northwest, Suite 1020, Washington,
D.C., 1 December 1992

[7] “PM Aviation Systems - Aviation Mission Equipment,
Systems Engineering Process and Procedures for Life-Cycle
Management Command Acquisition,” Tucson Embedded
Systems, Inc., February 2007.

[8] “AME Common Software Initiative Reuse of Common
Software for US Army Aviation Missile Command,” PM-
AME, Tucson Embedded Systems, Inc 30 August 2006.

 [9] “Software Product Lines – Practices and Patterns,
CMMI, and CMMI-AM,” Carnegie Mellon Software
Engineering Institute, March 2004.

[10] “Commonality Working Group Common Software
Demonstration, Lessons Learned,” Tucson Embedded
Systems, Inc., 20 July 2006

[11] “Supporting the Common Software Initiative,
Capability Driven Architecture – Radio Control, Reusable
Software Component, Integrator’s User Guide,” Tucson
Embedded Systems, Inc., 7 August 2006.

[12] “The ASIF Standard Reference Model (ASRM)–The
Development Environment that will Enable Common
Software Development for Army Aviation Aircraft,” Tucson
Embedded Systems, Inc. 9 February 2007

